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Φ
A physicist has data or creates some.

Then he looks at it.
Then he thinks a while.
Then he talks about it.

If he is lucky, someone is paying attention.

Perhaps he writes his gained insights down to paper,
so that others with bigger ∆t or ∆x can follow.

I am a physicist. I am not sure about the insight part,
but I am going to write something down.
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1 Introduction

The main topic of this work is the tracer advection in the wind field of a coupled global
climate model. Essential is the global aspect: The domain of interest is the atmosphere of
the earth.

As a first approximation. this is the space between two concentric spheres, while the distance
between these is small compared to the diameter. Simulation runs of the climate model pro-
duce multivariate1 time series of various quantities (three-dimensional wind, geo potential,
temperature, chemical concentrations, ...) on a geographical grid, which is a non-rectangular
one, when looking at division of the “real” earth surface. The vertical direction is given as
a pressure coordinate whose relation to the height in meters actually varies in time.

My focus is on the transport properties of the spatially and temporally highly variable three-
dimensional wind field. The means for the investigation is the computed transport of virtual
passive tracer particles, relating to represented air mass. Because of the complex structure
of the fields (temporally varying, big gradients with low resolution, long time scale) the
individual trajectory is numerically very unreliable. It sensitively depends on parameters
and the detailed implementation of the algorithm as well as compiler options and choice of
floating point accuracy. Therefore the Ansatz to use a large number of trajectories in an
ensemble and reach sensible statements that way.

The movement of large ensembles shall deliver information about transport barriers and
important mixing points via statistical analysis, specifically of densities and mixing rations
derived from time series.

The work presented here covers the first steps of transport analysis, the basic approach that
computes three-dimensional transport of passive tracers based on the modeled wind fields.
The basic method is not new. The numerical integration of trajectories in given wind fields
is not new.

New is possibly the scale and ignorance of the endeavor. I want to compute global transport
in longitude, latitude and height, solely based on the wind fields. There is no consideration
of conservation of fluid dynamical quantities (like described in [Stohl1998]) or even general
limitation to air layers that are considered to be separated. The further physics as well
es the problem of the differing character of horizontal and vertical wind data is put aside
consciously. I investigate an uniform global scheme for the transport in the atmosphere which
also works at the poles. It is about the question how far such a “blindfolded”2 approach
can lead to meaningful conclusions through large numbers of individual trajectories, using
today’s computing power.

1With the actually used grid that means time series of vectors with 48 · 96 · 23 = 105984 components, or
even 317952 when taking the full wind vector.

2 Blind in the non-biological sense of being without prejudice – close-eyes-and-charge blind, not against-
the-wall blind or no-forest-because-of-the-trees blind.
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1 Introduction

I will present my method of computing the transport of large particle ensembles, together
with the implemented computer software package with the working title PEP-Tracer (avail-
able at [PEP-Tracer]). Both represent a in some respects (yet) primitive approach with
current tools. A basic feature of the software is the extensibility3. The “current tools” are
powerful computers – networked to clusters – in big numbers and with plenty of memory
and storage4 as well as object oriented programming, to manage the growth of the software,
not just the growth of the hardware.

After presenting the method in detail, I will analyze first long time runs for consistency
with the GCM5. The consistency is searched in the conservation of the mass distribution of
the model (determined via pressure, temperature, moisture and physical volume of regions)
during numerical transport from globally distributed starting positions.

I use mainly three languages:

1. English in the main text.

2. Mathematical syntax and symbols in plain formulas as well as in formal representations
of algorithms.

3. ANSI/ISO6 C++ for examples of implementation (excerpts from the software package
associated with this work). Embedded comments are in English, like (nearly) all
symbol names. The C++ Standard Template Library is also used.

It will occur that I display the same content in all three languages, what hopefully will be
seen as insightful consideration from different directions instead of unnecessary redundancy.

1.1 Symbols and Syntax

Not all mathematical syntax that I use is obvious through established convention. Therefore,
Table 1.1 is listing several syntactical elements that may need explanation.

mimicking the the ternary operator in C++, I use the following symbolism for Boolean
expressions:

([condition] ? [if-yes-expression] : [if-no-expression])

[condition]

?
[if-yes-expression 1]
[if-yes-expression 2]
...

:
[if-no-expression 1]
[if-no-expression 2]
...

The first variant is embedded into other expressions, avoiding space wastage. It is to be
read as follows: At its place [if-yes-expression] is used if [condition] is true, otherwise [if-

3What I consider to be a positive feature.
4For today that means multiple GiB of RAM and disk storage in the TiB range. I am sure that these

numbers will rather amuse than impress in a few years.
5Global Climate/Circulation Model
6ISO/IEC 14882:1998 or 14882:2003, also named ANSI C++ ; Important here is the usage of the portable

standard language, not a specific compiler and its extensions.
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1.2 Computer systems that have been used

[a; b] closed interval between a and b
[a; b) interval between a and b, open at b
(a; b] interval between a and b, open at a
(a; b) open interval between a and b
{a; b} Set with elements a and b
ganz (x) integer part of x (ganz (3, 14) = 3; ganz (−3, 14) = −3)
rund (x) value of x rounded to the next integer (rund (3, 14) =

3; rund (3, 5) = 4)
i, j, k, n integer numbers, usually used as indices; without further note

i, j, k, n ∈ Z
a := b Assign the value b to the variable a. This notation is used when

the value of a can be changed by further assignments and so
a = b would not be correct in the mathematical context. It is a
kind of temporary “=”.

Table 1.1: Definition of additional mathematical Syntax

no-expression] is used. The second variant is just the enlargement of the first, covering
whole blocks of expressions. The condition itself is written using usual Boolean syntax, like
(x = 0 ∧ y = 0) ∨ z = 0 (“if x and y are equal to zero or z is equal to zero”).

As a matter of principle, I make use of the SI system of units. Some mathematical symbols
have consistent meaning throughout this work, Table 1.2 showing these.

There are some common symbols used in the program texts, not coming from the C++
standard. They shall be described here: The data type pep t is used to abstract the basic
floating point type, so usually identical to double or float.

Important named constants are to be found in Table 1.3. These constants are multiply
redundant, but support the abstraction7 and show in a for loop immediately if it is about
coordinates in space or speeds.

Furthermore, the definition of some vector data types (see Table 1.4) eases the work with
winds and positions in the three-dimensional space or the four-dimensional space-time. With
these types, also respective vector operations are used, those are listed in Table 1.5

The values of angles, usually for the geographic coordinates λ and β, will be sometimes given
in gradN or ◦O to keep it vivid, but in the mathematics they will be used in radians almost
exclusively. Mentioning 90◦O in the text is equal to λ = π

2 . Also does β ∈
[
−π

2 ; π
2

]
just

mean that the latitude is between north and south pole.

1.2 Computer systems that have been used

Computations have been completed on a set of computer system with differing configuration.
Hardware as well as Software does influence the results, most importantly the time needed
to achieve these. In the text, I will refer to systems named in Table 1.6 by their given name

7 as well as reasonably easy porting of the programs to 17 or 42 dimensions
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1 Introduction

λ, β longitude (λ) and latitude (β), in degree or radians

h global height coordinate (meters)

p global pressure coordinate (Pascal) – most often in place of a height
coordinate

T absolute temperature (Kelvin)

t time

R radius of the idealized Earth sphere

~r =

λ
β
p

 coordinate vector of a particle in the global system (longitude,
latitude, pressure)

~x =

x
y
z

 coordinate vector of a particle in the local system

(x, y, z)lok explicit denotation of coordinates in the local system (if not given
through context)

~̇r = d
dt

~r velocity vector in global system

~̇x = d
dt

~x velocity vector in local system

rb(β) = R cos β radius of a latitude circle at β (rb(0) = R; rb(π
2 ) = 0)

o, a, e partition parameters for longitude, latitude, level (height)

η mass conservation ratio

γ gravitation constant

g0 gravitational acceleration at sea level

M earth mass

m mass

Table 1.2: Symbols with fixed meaning

4



1.2 Computer systems that have been used

Constant Value Meaning

DIMS 4 number of space-time dimensions (3 space + 1 time)
SPACEDIMS 3 number of space dimensions
LON 0 index of longitude coordinate
LAT 1 index of latitude coordinate
LEV 2 index of height/pressure
TIME 3 index of time
SPEEDS 3 number of directions for wind speeds, in principle identical to

SPACEDIMS
U 0 index of u
V 1 index of v
W 2 index of ω
X 0 index of x or ẋ
Y 1 index of y or ẏ
Z 2 index of z or ż

Table 1.3: Named constants
for enhanced source code readability

Definition Meaning

typedef pep t place[DIMS]; coordinates in space and time, (~x, t), (~r, t)
typedef size t dataindex[DIMS]; indices in the coordinate grid
typedef pep t wind[SPEEDS]; wind... ~̇x, ~̇r
typedef pep t spaceplace[SPACEDIMS]; coordinates without time, ~x, ~r

Table 1.4: Vector data types
for the coordinates and winds

5



1 Introduction

Signature Meaning
null_dataindex(n); null_place(n);
null_space(n); null_wind(n)

zero out indices, places and winds ~n := ~0

copy_dataindex(a, b); copy_place(a, b
); copy_space(a, b); copy_wind(a, b)

copy indices, places and winds: ~b := ~a

add_space(a, b, c); add_flatspace(a, b
, c); add_place(a, b, c); add_wind(a, b,
c)

addition of places and winds: ~c := ~a +~b

sub_place(a, b, c); sub_space(a, b, c);
sub_flatspace(a, b, c); sub_wind(a, b,
c)

subtraction of places and winds: ~c := ~a−~b

sadd_space(a, s, c) addition of scalar value to each component:
~c := ~a + s ·~1

ssub_space(a, s, c) subtraction of scalar value from each compo-
nent: ~c := ~a− s ·~1

smul_space(a, s, c) multiplication with scalar: ~c := s ·~a
smul_flatspace(a, s, c) like the above, but only in the first two dimen-

sions (λ, β or x, y)
sdiv_space(a, s, c) division by scalar value: ~c := 1

s~a
sdiv_flatspace(a, s, c) like the above, but only in the first two dimen-

sions (λ, β or x, y)

Table 1.5: Vector operations
defined as functions. Actually, they are defined as preprocessor macros. A more advanced,

but also more complex alternative is the more consequent usage of the object oriented
programming paradigm with (template) classes and operators instead.
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1.2 Computer systems that have been used

instead of explaining the configuration each time. A common feature of all systems is that
they are operated (mostly) with Free software8.

� Adams: Compaq XP1000 AlphaStation with DEC 21264A (EV67) 64 Bit CPU,
667MHz and 1GiB PC100 RAM (two channels of 256 bit width, with 4MiB still largest
L2 cache in this list). Software: Source Mage GNU/Linux with Kernel 2.6.17.1 and
gcc-4.1.1 .

� Neuling: Laptop IBM ThinkPad X31, 32 bit Pentium-M Processor of the first gen-
eration (Banias, 1, 4GHz, 1MiB cache), Intel 855PM chip set with 512MiB DDR266
RAM. Software: Source Mage GNU/Linux with Kernel 2.6.20.7 and gcc-4.1.2

� Atlas: Opteron 2210 (two cores with 1, 8GHz), Broadcom HT1000 chip set, 2GiB
DDR2 RAM. Software: openSUSE 10.2 GNU/Linux (x86-64), Kernel 2.6.18.2-34 and
gcc-4.1.2 20061115. Main function of this machine is to provide ca. 3, 7TiB of disk
storage on 15 SATA II hard disks in RAID configuration via NFS to the Grotrian
cluster.

� Grotrian cluster: Gigabit-Ethernet cluster of nine dual core Opteron systems (AMD
Opteron 248, AMD chip set, 2GiB DDR RAM) and six systems with two dual core
CPUs each (AMD Opteron 275, nVidia chip set, 2GiB DDR RAM). Altogether there
are 42 Processors with clock speed of 2.2GHz. Software: SuSE Linux 10.0, kernel
2.6.13-15, gcc-4.0.2 20050901.

� Grotrian: Control node of the cluster with two AMD Opteron 248 CPUs and 2GiB
DDR RAM. Software: The same SuSE Linux 10.0 as the rest of the cluster.

Table 1.6: Computer systems

8in the sense of freedom, not free beer
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2 Data source: ECHO-GiSP GCM

2.1 Model

In the course of the Pole-Equator-Pole project (see [PEP]) my work is closely related with
the development of the ECHO-GiSP1 GCM2 (Figure 2.1) by Sascha Brand at the Alfred
Wegener Institute Potsdam (Article submitted, furthermore presented at the EGU General
Assembly: [Brand2007]). Existing components (ECHO-G) are extended with a module
for interactive feedback with stratospheric chemistry (computed by MECCA/iSP). Among
general statements about tracer transport in the GCM, the question about the influence of
the chemistry feedback does play a role in my work.

Some model parameters:

� 39 model pressure levels, including stratosphere (logarithmic distance)

� 40 variable tracers (chemical constituents), e.g. H2O,NO2,OH,HCHO

� 117 chemical reaction equations for the stratosphere

� Time steps:

– atmosphere: 15min

– ocean: 2h

– coupling ocean/atmosphere: 1d

Inside the chemistry module, semi-Lagrangian transport is used: The densities on grid points
are advected for a time step with the wind and then the dislocated densities are interpolated
back onto the grid points. To preserve continuity, the result is treated with a correction
factor – to prevent loss (or gain) of mass through the interpolation alone.

Sascha Brand provided me with data from two model runs: One with interactively coupled
chemistry and one reference run without that feedback. Said feedback mechanism actu-
ally consists of changes in the energy influx for the dynamical ore (adsorption/reflection in
different air layers depending on the chemical constituents)

2.2 Data

My topic is not the model itself, but the data it produces. Foremost, of course, the wind
fields. But other data sets are of interest, too. All data reaching me from ECHO-GiSP
shares a common format; from the spectral model the fields are extracted using a grid

1(ECHAM & HOPE-G including Stratosphere by AWI Research Unit Potsdam)
2Global Circulation/Climate Model, a global model for the atmosphere, here actually AOGCM, meaning a

model of atmosphere coupled with ocean (and sea ice)

9



2 Data source: ECHO-GiSP GCM

Figure 2.1: Simplified scheme of the ECHO-GiSP AOGCM
Atmosphere dynamics are integrated with a time step of 15 Minutes, Ocean dynamics with
2 hours. The coupling is done each day. The extraction of data for my use is done half-daily.

� 96 longitudes with fixed spacing of 3.75◦O (ca. 417km at the equator) and

� 48 latitudes with varying spacing around 3, 71◦N, on interpolated to

� 23 pressure levels (in Pascal, Pa). The extraction of fields happens with

� 0, 5 days temporal resolution.

The wind fields are given on each grid points as

� west wind component (towards the east) u in meters per second (m/s)

� south wind component (towards the north) v in meters per second (m/s)

� vertical wind component ω in Pascal per second (Pa/s).

The preliminary final data set for me consists of 95 years each for a reference run and a
run with interactive chemistry. The efficient work with the amount of data is a technical
challenge: One time series of the multivariate wind fields over 95 years needs 83GiB of
storage.

The access to the data is abstracted through the data class (shortened definition in List-
ing 2.1). One aspect of this class is to hide the access to potentially many (hundreds, thou-
sands) of files that make up one data set. Another aspect is to hide the detailed structure
of the grid and contained variables

Nowhere in my programs the grid resolution in space or time is fixed. This information is
collected from the self-describing data sets in the open and platform independent NetCDF
format ([NetCDF]). Without such a format, the design of a flexible and portable software
package for data analysis would be very questionable.

Through the common data format it is relatively easy for me to adapt my programs for the
work with additional, or just different, data sets. For example, I initially just needed the
three-dimensional wind data and created the programs accordingly, but was able to quickly
integrate changes to enable a co-worker to analyze ECHO-GiSP data for geopotential and
chemical concentrations (used in [Chandra2007]).

10



2.2 Data

Listing 2.1: Core elements of the common data interface

1 class data
2 {
3 public :
4 vector<string> varnames ;
5 vector<string> dimnames ;
6 s ize t vars ; s ize t dims ; // convenience s ho r t c u t s to . s i z e ( )
7 pep t timeunit ; // seconds per time un i t in f i l e ( p . ex . days in

f i l e : 86400)
8 pep_grid grid ;
9 bool ready ;

10
11 data ( ) ;
12 virtual ˜data ( ) { destruct ( ”data” ) ; } ;
13 // p l a c e ho l d e r s to be implemented in s p e c i a l i n t e r f a c e
14 virtual bool init ( ) { return fa l se ; } ; // to−be u s e f u l
15 virtual bool init (char** filenames , const int count ) { return

fa l se ; } ; // to−be u s e f u l
16
17 // gener i c data acces s v ia index
18 virtual void get_vector ( dataindex index , pep t *vals ) = 0 ;
19 // coord ina te acces s
20 virtual void get_vector ( const place p , pep t *w ) ;
21
22 // omit ted here : u t i l i t y f unc t i on s f o r f i n d i n g a po in t in the

gr id , e t c .
23 } ;

11



2 Data source: ECHO-GiSP GCM

Meanwhile, there does exist a series of special classes that can be used through the data
interface3:

� echog_pressure, which defines the common grid dimensions of ECHO-GiSP data,

� echog_pressure_cached, which implements the for the quasi-random access indis-
pensable4 data cache in RAM,

� egp_wind as specialization on the wind components u, v and ω,

� egp_geopoth for accessing the geopotential, including a special method to convert to
height meters and

� egp_density, which works with temperature and humidity data and computes the
density.

3via C++ polymorphism
4Without this, the computer is fully occupied with searching through the hard disk and the main processor

is essentially waiting all the time.
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3 From the wind field to the transported
ensemble

The central building block of the Lagrangian view on transport is the single trajectory, the
movement of a single particle. It is about the computation of the trajectory of the position
vector

~x(t)

driven by the given instationary wind field ~̇r

~̇r = f(~r, t); ~r(t0) = ~r0 (3.1)

This is a classic initial value problem of first order. With analytic treatment with a given
function ~̇r(~r, t), the solution is obvious by principle1. I will show you a simple (unphysical)
example with ~r = (x); f(~r, t) = (3x + 1)t in dimensionless form:

ẋ =
d
dt

x = (3x + 1)t (3.2)

x>=0⇔ 1
3x + 1

dx = tdt

⇔
x∫

0

1
3x + 1

dx =
1
2
t2

Using the substitution

y = 3x + 1
dy

dx
= 3 ⇒ dx =

dy

3

the integral can be solved like that

3x+1∫
1

1
3
·

1
y
dy =

1
2
t2

⇔ 1
3

ln y|3x+1
1 =

1
3

ln(3x + 1) =
1
2
t2

⇔ ln(3x + 1) =
3
2
t2

3x + 1 = e
3
2
t2

⇒ x(t) =
e

3
2
t2 − 1
3

1 as long as the differential equation is easy to integrate...
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3 From the wind field to the transported ensemble

This fulfills the differential equation Equation 3.2:

⇒ d
dt

x =
d
dt

(
e

3
2
t2 − 1
3

)

= 2
3
2
t
e

3
2
t2

3
= t · 3

e
3
2
t2

3

= t ·

(
3
e

3
2
t2 − 1
3

+ 3
1
3

)
= (3x + 1)t

Now, in this work, I do not deal with a simple differential equation, but a climate model, that
gives me values of the function f(~x, t) from Equation 3.2 in form of the wind components u,
v and ω at discrete points in time on discrete points of a spatial grid in λ, β and p.

The intention stays the same: I want to compute the trajectory ~r(t) out of given ~̇r = f(~r, t).
But an analytical treatment does not provide the answer. Numerical integration in the
given discrete wind field (Indices o, a, e for dimensions longitude, latitude, height and i for
the time) does:

~̇x =

uo,i

va,i

ωe,i

 ; o, a, e, i ∈ Z+ (3.3)

A basic question comes to mind regarding the horizontal wind in m/s and the horizontal
coordinates in the geographic grid, (λ, β). Those need to be brought together somehow.
The vertical speed is given in Pa/s, which basically fits the pressure levels in Pa. Under
the assumption of spherical geometry and (local) neglecting of the height variation of the
pressure levels this pressure speed is also orthogonal to the horizontal wind. This property
is a precondition for the application of a integration scheme like Runge-Kutta in multiple
dimensions2.

The question of the horizontal coordinates and the accompanying winds has to be resolved.
One has to make a decision, between

1. either computation in the geographical grid, for that local conversion from m/s into
◦O/s and ◦N/s or

2. computation in a local space, using meters, after conversion of the ◦O and ◦N coordi-
nates into m as well as transformation of the wind direction in the chosen projection.

The first variant is without doubt the simplest – one just has to scale the values of the wind
components and there is no further need to bother with geometry. A disadvantage, besides
systematic error, is the situation at the poles. Directly at the pole in the (λ, β) coordinate
system, the wind is not defined at all. There is just one degenerated direction towards the
opposite pole (at the north pole, you can use “south” synonymous with “any direction”, the
other way round at the south pole) and “east” or “west” is not defined at all. Some people
just artificially define values at the poles, or extend the values for each longitude to the final
latitude of the pole, to be able to totally work in the geographic grid. I want to approach

2Without orthogonality of the dimensions the coordinate changes of the sub steps would not be independent;
movement in x direction would also change p.
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3.1 Linear interpolation in N Cartesian dimensions

this problem directly. I want to work with properly defined winds and directions. Therefore,
I will investigate the second method that works in a local Cartesian coordinate system (with
flat coordinates in meters). But before I give the simpler computation in the geographic grid
a treatment, too.

Before going into detail about the transport computations, I want to present the generic
algorithms for interpolation and integration, that are in use for my work up to now3.

3.1 Linear interpolation in N Cartesian dimensions

The simplest method to interpolate between points in a Cartesian grid is the linear interpo-
lation inside a grid cell4. In detail:

The objective is the linear interpolated value of a variable y that depends on coordinates
xn; n ∈ [1;N ]: y(~x); ~x ∈ RN . Given are values of y on a hyper cuboid in RN , called
“grid cell”, that encloses the point ~x. The grid cell is defined by intervals in each of the N
dimensions, enclosing the respective components of ~x: xn,0 ≤ xn ≤ xn,1.

In the literature, I usually find just one display of the variant in two dimensions, with the
lapidary note that it is analogous in higher dimensions. Sometimes, this is accompanied with
the sketch of the idea of recursion using one-dimensional linear interpolations. The direct
algorithms for bilinear or trilinear (2D and 3D) interpolation are in widespread use and de-
scribed. But what I was unable to find, is a definite formula and corresponding algorithm for
the N -dimensional interpolation. I often read that the generalization to arbitrary dimensions
is obvious. But despite – or because of? – that, I was unable to find something definite. It is
true that I actually just need the interpolation in 4 dimensions, but I think it is appropriate
to derive this special case from some generic rule. Because I cannot find a description of
this “obvious” generic rule, I have to construct it beforehand. The difficulty is not in the
concept5, but rather in getting the rule into the right shape. This is not impossible, though,
given the right tool – what I am about to show with the following pages.

3.1.1 A generic recursion formula

The concept of linear interpolation is very simple. What complicates the issue for arbitrary
dimensions, is the enumeration of the corners of the grid cell. The coordinate vector of
each grid point in the role of the grid cell corner consists of a combination of lower and
upper interval boundaries in the individual dimensions. The xn coordinate of a corner is
either xn,0 or xn,1. A certain corner is thus defined through a series of N choices of lower
border (0) or upper border (1) for the interval in each dimension. A natural hierarchy of
the corner points is established when this selection of lower or upper border in dimension
n is interpreted as n-th digit of a binary number. To work with this number as a whole
and the individual digits at the same time, I use the term of the vector in the binary vector

3It is one aim of program design to keep the algorithms replaceable. It shall be possible to add and evaluate
different approaches.

4Different from the general interpolation problem that searches a function for the whole grid.
5 Which is obvious, remember?
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3 From the wind field to the transported ensemble

space Bk; B = {0; 1}. Every element ~b in this space corresponds to the binary encoding of
a number6 b ∈

[
0; 2k − 1

]
⊂ Z:

b =
k∑

n=1

bn2n−1 (3.4)

E.g. for k = 3, ~b = (0; 1; 1) is the vector corresponding to the decimal number b = 6,
according to its representation in binary7: 110.

This assignment is nothing different than the representation of a number in the one or the
other system of numbers, therefore it is bijective, unambiguous. With the definition of of
~b ∈ Bk I can reach all corners of the k-dimensional grid cell through simple iteration in b
and the directly connected index vector ~b. The k-dimensional coordinate vectors ~x(k) are
index ted via the plain number b, what, using the relation to ~b, includes the indices for all
components x

(k)
n = xn, bn (reminder: xn,0 and xn,1 are the given interval borders):

~x
(k)
b = (x1,b1 , . . . , xk,bk

) (3.5)

I treated k separately from the dimension count N , to be able to represent the k-dimensional
grid cell contained in the N -dimensional space, appearing as intermediate result in the
course of the recursive interpolation The complete coordinate vector ~xb of a corner of the
k-dimensional grid cell in the N -dimensional space is described by

k ∈ [0;N ] : ~xb = (~x(k)
b , xk+1, . . . , xN ) = (x1,b1 , . . . , xk,bk

, xk+1, . . . , xN ) (3.6)

(Components of ~x
(k)
b are inserted into ~xb.).

A remark about the hierarchy of the indices b shall help understanding the following recursion
mechanism. Between the coordinates and indices of adjacent recursion steps, there holds the
relation (

~x
(k−1)
b , xk,0

)
= x

(k)
b (3.7)(

~x
(k−1)
b , xk,1

)
= x

(k)

b+2k−1

That becomes clear when looking at the index vector. For x
(k−1)
b , this is ~b = (b1, . . . , bk−1),

the index value
k−1∑
n=1

bn2n−1 = b. When ~b is extended by one dimensions, attaching bk = 0, the

result is ~b′ = (b1, . . . , bk−1, 0) and the index value does not change: b′ = b+0 · 2k−1 = b. But
when a 1 is attached, the resulting index value of~b′′ = (b1, . . . , bk−1, 1) is b′′ = b+1 · 2k−1. The
extension of the index vector causes a doubling of the used indices, from 2k−1 to 2 · 2k−1 = 2k.
All index vectors that got a 0 attached, have an index value b′ ∈

[
0; 2k−1 − 1

]
, all vectors

that got a 1, lie in the upper half of the enlarged interval: b′′ ∈
[
2k−1, 2k − 1

]
.

6b is a valid norm of the vector ~b
7In the binary notation, the first digit (the least significant bit) is written at the right side, while it appears

on the left side in the vector notation, according to common convention.
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3.1 Linear interpolation in N Cartesian dimensions

Using this indexing, a clear generic formulation of the linear interpolation in a grid cell in
N dimensions is possible, usually only being indicated verbally or in two dimensions:

∀n ∈ [1;N ] : dn,0 =
xn,1 − xn

xn,1 − xn,0
; dn,1 = 1− dn,0 (3.8)

∀k ∈ [1;N ] : ∀b ∈
[
0; 2k−1 − 1

]
:

y
(k−1)
b (~x(k−1)

b , xk, . . . , xN ) = dk,0 · y
(k)
b

(
~x

(k−1)
b , xk,0, xk+1, . . . , xN

)
+dk,1 · y

(k)

b+2(k−1)

(
~x

(k−1)
b , xk,1, xk+1, . . . , xN

)
Corresponding to the location of xn between xn,0 and xn,1, the weights dn,0 and dn,1 are
fixed – just like in the one-dimensional case. The recursion derives the interpolation in the
dimension n from the values resulting from the interpolation in dimensions N to n+1. That
way, the values y

(N)
b at the 2N corners are interpolated to the final y

(0)
0 . The first and last

step of the recursion are given by

y(x1, . . . , xN ) = y
(0)
0 (x1, . . . , xN ) (3.9)

= d1,0 · y
(1)
0 (x1,0, x2, . . . , xN )

+d1,1 · y
(1)
1 (x1,1, x2, . . . , xN )

∀b ∈
[
0; 2N−1 − 1

]
:

y
(N−1)
b

(
~x

(N−1)
b , xN

)
= dk,0 · y

(N)
b

(
~x

(N−1)
b , xN,0

)
+dk,1 · y

(N)

b+2N−1

(
~x

(N−1)
b , xN,1

)
∀b ∈

[
0; 2N − 1

]
: y

(N)
b = y

(N)
b

(
~x

(N)
b

)
Following Equation 3.9 and Equation 3.9, a C++ function can be written in a very direct
way, to be seen in Listing 3.1. Due to the intended application, this function does not
just compute a single value, but a vector ~y of multiple variables, these components being
independent and thus not bothering the basic algorithm.

3.1.2 Reversal of the recursion

I must confess that the recursive implementation in Listing 3.1 may be the first variant
in a didactic sense, but occurred to me as the last one. The inverted work flow appeared
more natural to me: not top-down via recursion but rather bottom-up in an iterative way.
Generally, the reformulation of a recursive algorithm to yield an iterative algorithm is deemed
beneficial, though it is not guaranteed that this will result in increased computing efficiency
in the real world application.

After some thinking, such a reformulation to iterative computation can be found. The dn,i

from Equation 3.8 stay as given. When you look at Equation 3.9, you can also read the
iterative algorithm instead of the recursive one! I work in a loop over dimensions from high
k and compute, for every step, the set of y

(k−1)
b out of the y

(k)
b , or y

(k)

b+2(k−1) , respectively.
The formula is the same, but the program in Listing 3.2 does not need recursion; just for
loops.
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3 From the wind field to the transported ensemble

Listing 3.1: N-dimensional linear Interpolation by recursion

1 void int_linear_recursive ( s ize t dims , s ize t vars ,
2 pep t *here , pep t *corners ,
3 pep t *cornval , pep t *result ,
4 s ize t k = 1 , s ize t b = 0 )
5 {
6 // work on i nd i c e s b and b+2ˆ(k−1)
7 s ize t b1 = b + (( s ize t )1<<(k−1) ) *vars ;
8 xdebug ( ”k=%zu ; b=%zu ; b1=%zu” , k , b , b1 ) ;
9 // c a l c u l a t e we i g th s

10 pep t d0 =
11 ( corners [ dims+k−1] != corners [ k−1])
12 ? ( ( corners [ dims+k−1] − here [ k−1]) / ( corners [ dims+k−1] −

corners [ k−1]) )
13 : 1 ;
14 pep t d1 = 1 − d0 ;
15
16 i f (k < dims )
17 {
18 pep t b1result [ vars ] ;
19 // recur s ion to ge t y b and y ( b+2ˆ(k−1))
20 int_linear_recursive (dims , vars , here , corners , cornval ,

result , k+1, b ) ;
21 int_linear_recursive (dims , vars , here , corners , cornval ,

b1result , k+1, b1 ) ;
22 // . . . and the f i n a l we igh ted sum
23 for ( s ize t v = 0 ; v < vars ; ++v )
24 result [ v ] = d0*result [ v ] + d1*b1result [ v ] ;
25 }
26 else
27 {
28 // bottom case : k=dims
29 for ( s ize t v = 0 ; v < vars ; ++v )
30 result [ v ] = d0*cornval [ b+v ] + d1*cornval [ b1+v ] ;
31 }
32 }
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3.1 Linear interpolation in N Cartesian dimensions

Listing 3.2: N-dimensional linear interpolation by iteration

1 void int_linear_reverse ( s ize t dims , s ize t vars ,
2 pep t *here , pep t *corners [ 2 ] ,
3 pep t *cornval , pep t *result )
4 {
5 // e l im ina t i n g every dimension
6 for ( s ize t d = 0 ; d < dims ; ++d )
7 {
8 // we igh t s
9 pep t s0 =

10 ( corners [ 1 ] [ d ] != corners [ 0 ] [ d ] )
11 ? ( ( corners [ 1 ] [ d ] − here [ d ] )
12 / ( corners [ 1 ] [ d ] − corners [ 0 ] [ d ] ) )
13 : 1 ;
14 pep t s1 = 1 − s0 ;
15 // the 2ˆ( dims−d ) po in t s l e f t a f t e r e l im ina t i n g d dimensions
16 for ( s ize t corn=0; corn < ( ( s ize t )1<<dims )>>d ; corn+=2)
17 {
18 // we compute the va l u e s f o r p0 and p1 t o g e t h e r in t o the

p l ace o f p0
19 // next i t e r a t i o n uses t h e s e va l u e s (when in doubt , t h ink o f

memory l ayou t )
20 s ize t p0_offset = (corn<<d ) *vars ;
21 s ize t p1_offset = (( corn+1)<<d ) *vars ;
22 // now i n t e r p o l a t i n g in dimension d ( from behind , a c t u a l l y )

f o r every v a r i a b l e
23 for ( s ize t v = 0 ; v < vars ; ++v )
24 cornval [ p1_offset+v ] = s1*cornval [ p1_offset+v ]
25 + s0*cornval [ p0_offset+v ] ;
26 }
27 }
28
29 i f ( result != NULL )
30 memcpy ( result , cornval , s izeof (pep t ) *vars ) ;
31 }
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3 From the wind field to the transported ensemble

In practice, for fixed N , neither Listing 3.1, nor Listing 3.2 will be put to service. To compute
the actually needed interpolation in maximal four dimensions efficiently, I derive the explicit
computation according to the complete recursion of Equation 3.9. The view of the resulting
formula inspires a much more direct formulation of the N -dimensional interpolation, which
will complete this little collection of formulas and algorithms.

3.1.3 Explicit representation in four dimensions

With the ECHO-GiSP data I have to deal with the four dimensions λ (longitude), β (lat-
itude), p (pressure, height) and t (time). In four dimensions it is fairly workable to exe-
cute the complete recursion. This may be a bit lengthy, but at least memorable. Instead
of the anonymous enumeration of xn, I use the definite symbols of the dimensions; we
look for y(t, p, β, λ) inside the grid cell spanned by (t0, p0, β0, λ0) and (t1, p1, β1, λ1). So:
x1 → t; x2 → p; x3 → β; x4 → λ.

The weights are given by Equation 3.8:

dλ,0 =
λ1 − λ

λ1 − λ0
; dλ,1 = 1− dλ,0 (3.10)

dβ,0 =
β1 − β

β1 − β0
; dβ,1 = 1− dβ,0

dp,0 =
p1 − p

p1 − p0
; dp,1 = 1− dp,0

dt,0 =
t1 − t

t1 − t0
; dt,1 = 1− dt,0

The dimensions can be interpolated “away” now step by step. The numbers i, j, k play the
part of ~b, or b in the recursion steps.

y
(0)
0 (t, p, β, λ) = dt,0 · y

(1)
0 (t0, p, β, λ) (3.11)

+dt,1 · y
(1)
1 (t1, p, β, λ)

y
(1)
i (ti1 , p, β, λ) = dp,0 · y

(2)
i (ti1 , p0, β, λ)

+dp,1 · y
(2)
i+2 (ti1 , p1, β, λ)

y
(2)
j (ti1 , pj2 , β, λ) = dβ,0 · y

(3)
j (ti1 , pj2 , β0, λ)

+dβ,1 · y
(3)
j+4 (ti1 , pj2 , β1, λ)

y
(3)
k (ti1 , pj2 , βk3 , λ) = dλ,0 · y

(4)
k (ti1 , pj2 , βk3 , λ0)

+dλ,1 · y
(4)
k+8 (ti1 , pj2 , βk3 , λ1)
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3.1 Linear interpolation in N Cartesian dimensions

After replacements and multiplication of terms, we have all 24 = 16 of them.

y(t, p, β, λ) = dt,0dp,0dβ,0dλ,0y(t0, p0, β0, λ0) (3.12)
+dt,0dp,0dβ,0dλ,1y(t0, p0, β0, λ1)
+dt,0dp,0dβ,1dλ,0y(t0, p0, β1, λ0)
+dt,0dp,0dβ,1dλ,1y(t0, p0, β1, λ1)
+dt,0dp,1dβ,0dλ,0y(t0, p1, β0, λ0)
+dt,0dp,1dβ,0dλ,1y(t0, p1, β0, λ1)
+dt,0dp,1dβ,1dλ,0y(t0, p1, β1, λ0)
+dt,0dp,1dβ,1dλ,1y(t0, p1, β1, λ1)
+dt,1dp,0dβ,0dλ,0y(t1, p0, β0, λ0)
+dt,1dp,0dβ,0dλ,1y(t1, p0, β0, λ1)
+dt,1dp,0dβ,1dλ,0y(t1, p0, β1, λ0)
+dt,1dp,0dβ,1dλ,1y(t1, p0, β1, λ1)
+dt,1dp,1dβ,0dλ,0y(t1, p1, β0, λ0)
+dt,1dp,1dβ,0dλ,1y(t1, p1, β0, λ1)
+dt,1dp,1dβ,1dλ,0y(t1, p1, β1, λ0)
+dt,1dp,1dβ,1dλ,1y(t1, p1, β1, λ1)

The sum is expressed using four short loops in the associated C++ program (Listing 3.3) –
it is up to the compiler to optimize these away for maximum efficiency8.

3.1.4 Generalization to plain sum in N dimensions

Looking at Equation 3.12, especially at the compressed loop in the program, provokes the
thought that the general interpolation in N dimensions can be expressed as a plain sum,
too. That is the case! Using the binary vector, the linear interpolation in N dimensions can
indeed be expressed compactly as a sum over all possible values of b and the corresponding
~b ∈ BN – the assignments of 0 or 1 to the indices bn.

y(~x) =
2N−1∑
b=0

(
N∏

n=1

dn,bn

)
· y
(
~x~b

)
(3.13)

This sum encompasses all 2N corners of the grid cell and weights them with the appropriate
product of the dn,i. In theory, that leads to the same result as when using Equation 3.9 – the
formula corresponds to the worked-out recursion, as shown for four dimensions. In practice,
you can get differences due to the limited accuracy of computers combined with the lowered
number of mathematical operations. The theoretical equivalence to Equation 3.9 can be
proven generally by induction:

I begin with the assumption, that the interpolation of y(x′1, . . . , x
′
N ) is given by the plain sum

(as shown for N = 4). Each interpolation over N ′ dimensions can be seen as an incomplete

8... which is probably appropriate here, but excessive “unrolling” of loops can have a negative impact due
to increased code size.
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3 From the wind field to the transported ensemble

Listing 3.3: definite program code for the interpolation in four dimensions

1 pep t interpolate_4d (pep t grid [ DIMS ] [ GRIDSIZE ] ,
2 s ize t index [ 2 ] [ DIMS ] , pep t position [ DIMS ] , pep t val

[ 2 ] [ 2 ] [ 2 ] [ 2 ] )
3 {
4 pep t m = 0 ; // the va lue at po in t o f i n t e r e s t
5 pep t d [ DIMS ] [ 2 ] ; // d and (1−d ) f o r 4 coord ian t e s
6
7 for ( int i = 0 ; i < DIMS ; ++i )
8 {
9 d [ i ] [ 0 ] = ( grid [ i ] [ index [ 1 ] [ i ] ] − position [ i ] )

10 / ( grid [ i ] [ index [ 1 ] [ i ] ] − grid [ i ] [ index [ 0 ] [ i ] ] ) ;
11 d [ i ] [ 1 ] = 1−d [ i ] [ 0 ] ;
12 }
13
14 for ( int t = 0 ; t < 2 ; ++t )
15 for ( int p = 0 ; p < 2 ; ++p )
16 for ( int beta = 0 ; beta < 2 ; ++beta )
17 for ( int lambda = 0 ; lambda < 2 ; ++lambda )
18 m += d [ 0 ] [ t ] * d [ 1 ] [ p ] * d [ 2 ] [ beta ] * d [ 3 ] [ lambda ]
19 * val [ t ] [ p ] [ beta ] [ lambda ]
20
21 return m ;
22 }
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3.1 Linear interpolation in N Cartesian dimensions

interpolation in the (N = N ′ + 1) - dimensional space. The application of the finale step
from Equation 3.9 will show that the result can, again, be represented as a plain sum. To
be able to apply Equation 3.9, I add the interval border x1,i as new first coordinate for the
embedding in the N - dimensional space, renumbering the following indices xn = x′n−1. Now
the two interpolated values for the upper and lower border of the interval [x1,0;x1,1] of the
first, added, dimension are covered:

i ∈ {0; 1} : yi(x′1, . . . , x
′
N ) = y(x1,i, x

′
1, . . . , x

′
N ) = y(x1,i, x2, . . . , xN )

The direct formula for y needs some change because of the newly introduced coordinate with
its new index. But this index is fixed at 0 or 1, while the old indices are shifted in position
by one. The sum is still carried out over b ∈

[
0; 2N ′ − 1

]
elements, but the actual work index

is modified: b(i) = 2b′ + i. The multiplication with 2 moves the indices (binary bits) by one
position, the addition of i fixes the newly created first9 index to i = 0 or i = 1.

b(i) = 2b′ + i : y(x1,i, x2, . . . , xN ) =
2N−1−1∑

b′=0

(
N∏

n=2

dn,(b(i))n

)
· y(~x~b(i)

) (3.14)

Now I can unify that form with Equation 3.13 with the final step of the recursion from
Equation 3.9:

y(x1, . . . , xN ) = d1,0 ·

2N−1−1∑
b′=0

(
N∏

n=2

dn,(b(0))n

)
· y(~x~b(0)

) (3.15)

+d1,1 ·

2N−1−1∑
b′=0

(
N∏

n=2

dn,(b(1))n

)
· y(~x~b(1)

)

(b(0))1=0
=

(b(1))1=1

2N−1−1∑
b′=0

(
N∏

n=1

dn,(b(0))n

)
· y(~x~b(0)

) (3.16)

+
2N−1−1∑

b′=0

(
N∏

n=1

dn,(b(1))n

)
· y(~x~b(1)

)

The global factors d1,0 and d1,1 move into the product inside the sum, so that that product
can be extended by the first index with (b(i))1 = i.

What still is missing for the identification with Equation 3.13, is the unification of the two
sums. A view on the binary indices shows that this is actually already a given: Together, both
partial sums cover all b(i) ∈

[
0; 2N − 1

]
via b′ = 2N−1−1 ⇒ b(1) = 2(2N−1−1)+1 = 2N−1.

The first sum contains all even b(i) (because of the least significant bit being zero) and the
second all odd b(i). The derived index b(i) can be replaced by a direct b in the unified sum
over b ∈

[
0; 2N − 1

]
, which proves that

i ∈ {0; 1} : y(x1,i, x2, . . . , xN ) =
2N−1−1∑

b′=0

(
N∏

n=2

dn,(b(i))n

)
· y(~x~b(i)

) (3.17)

⇒ y(x1, x2, . . . , xN ) =
2N−1∑
b=0

(
N∏

n=1

dn,bn

)
· y
(
~x~b

)
9the first, or rather zeroth, bit – according to the value 20 = 1
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3 From the wind field to the transported ensemble

To summarize: From the validity of Equation 3.13 for N − 1 dimensions it follows, with
Equation 3.9 as special case of Equation 3.9, the validity of Equation 3.13 for N dimensions.
I derived the direct formula from the laid-out recursion in four dimensions, so it is proved
that it is valid for N > 4. In principle, the proof for N < 4 is missing, but already a glance
at N = 1 show the equivalence for this case.

Having secured its validity, the formula explicitly using the components of ~b can be imple-
mented by aid of the bit operators in C++ in Listing 3.4. The combination of bitshift to
the left or right10 as well as bitwise “and” facilitates the access of individual bits out of the
binary representation of an integer number. ((corn & (1<<d))>>d) yields 1 if bit d (from
the right) is set and 0 if not.

Listing 3.4: N-dimensional linear interpolation using plain sum

1 void int_linear_direct ( s ize t dims , s ize t vars , pep t *here ,
pep t *corners [ 2 ] , pep t *cornval , pep t *result )

2 {
3 pep t d [ dims ] [ 2 ] ; // weigh t f a c t o r s f o r dims d i r e c t i o n s
4 for ( s ize t dim = 0 ; dim < dims ; ++dim )
5 {
6 d [ dim ] [ 0 ] =
7 ( corners [ 1 ] [ dim ] != corners [ 0 ] [ dim ] )
8 ? ( ( corners [ 1 ] [ dim ] − here [ dim ] )
9 / ( corners [ 1 ] [ dim ] − corners [ 0 ] [ dim ] ) )

10 : 1 ;
11 d [ dim ] [ 1 ] = 1 − s [ dim ] [ 0 ] ;
12 }
13
14 for ( s ize t i=0; i != vars ; ++i ) result [ i ] = 0 ; // i n i t
15
16 // sum up the parts , we have 2ˆdims corners
17 for ( s ize t corn=0; corn < ( ( s ize t ) 1)<<dims ; ++corn )
18 {
19 // compute we igh t o f corner po in t
20 pep t weight = 1 ;
21 for ( s ize t dim = 0 ; dim < dims ; ++dim )
22 weight *= d [ dim ] [ ( corn & ( ( ( s ize t ) 1)<<dim ) )>>dim ] ;
23
24 // now add the weigh ted va l u e s
25 for ( s ize t v=0; v < vars ; ++v )
26 result [ v ] += cornval [ corn*vars+v ]* weight ;
27 }
28 }

10left: in direction of higher bits; right: in direction of lower bits
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3.2 Interpolation using distance-weighted sum / Shepard interpolation

3.1.5 Efficiency comparison

You may ask the question about why one needs three different algorithms for one and the
same (sort of simple) computation. One answer is delivered by an investigation of the needed
runtime depending on dimensionality and number of variables, up to 20 each. Figure 3.1
shows a mixed picture: Every variant has its realm, where it is the best performer for the
task. Listing 3.2 is dominating on Neuling for 10 to 16 dimensions and low variable count,
while for higher values of both parameters it is inferior to both other variants. But these
relations depend sensitively on the machine in use – especially the memory architecture
decides if it is about computing time of the processor or waiting time for memory access.
Therefore, the main message of the measurements is that the question for the generally best-
performing algorithm cannot be answered clearly. At the edge of the investigated parameter
space, the plain sum seems to win for high dimension and variable count, but that can change
with further scaling of parameters or a different hardware platform.

One rule hold true for all methods shown here: The complexity of the linear interpolation
using all corners of the N -dimensional grid cell is governed by 2N , the number of corner
points. The computing effort raises exponentially with the number of dimensions – no algo-
rithm that incorporates all corners can change that. A possibility for the linear interpolation
with significantly reduced complexity employs the selection of a subset of corner points to be
used – like shown in [Rovatti1998]. There, the simplex of N + 1 corner points encompassing
the interpolation point is determined, the interpolation then only using these N + 1 points.
That is indeed a definite saving compared to the 2N corner points of the complete cell, but
at the price of neglecting more of your available data.

In the end, for my applications with interpolation in two or four dimensions, a fixed variant
like Listing 3.3 will be employed. But it does not hurt to be aware of the background – and
to have treated the N -dimensional linear interpolation in a more thorough way than usual,
for once.

3.2 Interpolation using distance-weighted sum / Shepard
interpolation

The linear interpolation forms a sum over the values at encompassing grid points, weighted
with the product of distances in the individual dimensions. That works in a Cartesian grid
with rectangular cells, but not when the grid points are irregularly spaced, or the grid is just
no rectangular one. When you loop at the (λ, β) geographical grid points not in the abstract
coordinate space but on the earth surface, the grid cells are not rectangular anymore.

A simple method for the interpolation in arbitrary grids has been presented by Shepard about
forty years ago in [Shepard1968]. He formulated it for two dimensions, yet the number of
dimensions is actually irrelevant for the basic idea. This basic idea is also known as “distance-
weighted sum” of the neighboring, or even all, grid points. I only consider a local Shepard
interpolation: I am limiting the sum to the corner points of the encompassing grid cell in
advance. This cell is not Cartesian anymore but still regular in (λ, β), so that the concerning
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3 From the wind field to the transported ensemble
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Figure 3.1: Relative runtime of the linear interpolation
of up to 20 variables in up to 20 dimensions with the three different approaches on three
different computer systems. The depicted value is the runtime for the particular machine,
normalized to the maximum of the three runs. A value of 1 means that the variant needed
the most time, a value below 1 shows how much faster the concerned variant was compared
to the slowest. Despite the indication of some common characteristics of the algorithms
concerning the parameters, it is clear that e.g. Atlas generally prefers the memory-intensive
iterative approach over the recursion, while the other computer systems (with slower mem-
ory access) prefer the recursion for higher variable and dimension count. The differing
balance between memory access / transfer and the actual processing performance is always
an important factor.
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3.3 four-step Runge-Kutta integration

corner points are quickly identified. Using the distance function d(~x, ~xi), the computation
after Shepard is given by

y(~x) =

n∑
i=1

1
d(~x,~xi)k y(~xi)

n∑
i=1

1
d(~x,~xi)k

(3.18)

One is free to choose an exponent k, but already in [Shepard1968], k = 2 is suggested as
optimal value, also in Cartesian space computable with minimal effort11: With the euclidean

metric, the distance weight is simply derived from d(~x, ~xi)2 =
(√

(~x− ~xi)
2

)2

= (~x− ~xi)
2.

The code in Listing 3.5 shows the essential interpolation method as used in the class world.

3.3 four-step Runge-Kutta integration

The established Runge-Kutta scheme of fourth grade is to be found schematically in the
literature, usually for the single coordinate x(t). The scheme essentially stays the same for
higher (Cartesian!) dimensions and can be applied directly here after generalizing to vectors
of variables. Out of ~x at time t0, ~x at time t0 + ∆t is being computed:

~x0 = ~x(t0)
~k1 = ∆t · ~̇x(~x0, t0)

~k2 = ∆t · ~̇x(~x0 +
1
2
~k1, t0 +

1
2
∆t)

~k3 = ∆t · ~̇x(~x0 +
1
2
~k2, t0 +

1
2
∆t)

~k4 = ∆t · ~̇x(~x0 + ~k3, t0 + ∆t)

⇒ ~x(t0 + ∆t) = ~x0 +
1
6

(
~k1 + 2~k2 + 2~k3 + ~k4

)
(3.19)

For further details concerning this standard procedure, I defer to [Bronstein2000], where the
essential issues are covered.

3.4 3D integration in the geographical

The first approach works completely in the geographical grid and basically ignores the curva-
ture of dimensions. Values for ~̇x between grid points are computed using linear interpolation
in all four dimensions of the grid. But the winds extracted from ECHO-GiSP are given in

11the local Cartesian coordinate system, where the grid cell, seen as Cartesian in global coordinate space, is
not Cartesian anymore
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3 From the wind field to the transported ensemble

Listing 3.5: Prototype of the applied Shepard-interpolation

1 s ize t n ; // input : number o f g r i d c e l l p o in t s
2 coordinates *system ; // input : l o c a l system
3 place np [ n ] ; // input : g r i d c e l l p l a c e s
4 wind nw [ n ] ; // input : g r i d c e l l winds
5 wind w ; // output : r e s u l t i n g l o c a l wind
6
7 wind lw [ n ] ; // l o c a l g r i d c e l l winds
8 pep t weightsum = 0 ;
9 s ize t i ;

10
11 for (i = 0 ; i < n ; ++i ) // weights , sum of
12 {
13 // g l o b a l −> l o c a l coord ina t e s
14 system−>lwind (np [ i ] , nw [ i ] ,lw [ i ] ) ;
15 system−>lplace (np [ i ] , workplace ) ;
16 // lme t r i c 2d = 2D ( squared ) d i s t ance from system base
17 i f ( ( weight [ i ] = system−>lmetric_2d ( workplace ) ) != 0 )
18 weightsum += ( weight [ i ] = 1/weight [ i ] ) ;
19 else break ; // h i t a g r i d po in t
20 }
21
22 i f (i < n ) // u n l i k e l y exac t h i t o f a po in t
23 copy_wind (lw [ i ] , w ) ;
24 else // sum winds wi th normal ized we i gh t s
25 {
26 for (i = 0 ; i < n ; ++i ) weight [ i ] /= weightsum ;
27
28 for ( s ize t speed = 0 ; speed < SPEEDS ; ++speed )
29 {
30 w [ speed ] = 0 ;
31 for (i = 0 ; i < n ; ++i )
32 w [ speed ] += weight [ i ] * lw [ i ] [ speed ] ;
33 }
34 }
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3.5 The earth is round
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Figure 3.2: The polar trap for geographical grid integration
An early result using geographical grid integration without vertical transport (movement
on a pressure surface): The particle stays trapped at the north pole instead of going to the
other side.

m/s. To be able to execute the integration in the geographic grid, v and u need to be locally
converted from m/s into ◦/s:

u′(λ, β, p) = u(λ, β, p) ·
180◦

πR · cos(β)
(3.20)

v′(λ, β, p) = v(λ, β, p) ·
180◦

πR
(3.21)

Together with the unchanged vertical wind ω in the locally adapted velocity, we have

~̇x′(~r) = ~̇x′(λ, β, p) =

u′

v′

ω

 (3.22)

Instead of ~̇r, the converted ~̇x′ is used in 3.19.

That is the complete calculation, actually! Truly simple, but also problematic.

My first prototype12 uses this procedure, limited to horizontal computation corresponding
to the first test data. Independent of the latter restriction, a fundamental problem shows
itself in vicinity of the poles: Without special treatment, particles can become trapped at
the pole, see Figure 3.2. One can see from Figure 3.3 and Figure 3.4 that, especially at the
north pole, the stagnation of particles at one place is highly unrealistic, taking those wind
characteristics into account.

3.5 The earth is round

In the implementation following the prototype, the bilinear interpolation in λ, β has been
replaced by the transformation in a local coordinate system with more flexible distance-
weighted sum. This approach of a local coordinate system follows out of treatment of the
12written in Perl using PDL to read NetCDF data and do vector operations, just 370 lines of code
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3 From the wind field to the transported ensemble
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Figure 3.3: North polar wind in 850hPa (orthographic), interactive run
Especially at the pole, there is a hefty wind blowing over it, not just into. On the display
is data from the interactive run of year 1965. In the middle of the picture, 30 kilometers
length of wind vector correspond to 1m/s wind speed.
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Figure 3.4: North polar wind in 850hPa (orthographic), reference run
Especially at the pole, there is a hefty wind blowing over it, not just into. On the display
is data from the reference run of year 1965. In the middle of the picture, 30 kilometers
length of wind vector correspond to 1m/s wind speed.
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3 From the wind field to the transported ensemble

fact that the earth is round, wile one uses an integration scheme that has been designed for
Cartesian space.

A multi-dimensional Runge-Kutta scheme (like other common schemes) assumes the different
spacial dimensions to be Cartesian, so that the coordinate axes are rectangular to each other.
Indeed, that is locally the case in the longitude-latitude-height system13. But already the
corners of grid cells have differing north and east directions and the individual integration
steps are ambiguous when you move on the surface according to the velocities given in m.

When I say differing north and east directions, then I better explain that. Of course, the
directions are properly defined14. But the relation of directions at different places is not that
simple on the curved geometry. For me standing on the earth surface, it appears flat at first.
I think of myself being in a Cartesian coordinate system, with one north and, rectangular to
that, one east direction. The impression lies, of course, we know that the earth is round and
the coordinate system built by the longitudes and latitudes not Cartesian. But still, that
local view and the associated separation of the geographical directions bears some sense.

A thought experiment may serve as an example: I have got two points on the earth surface,
sufficiently far away from each other and not both on the equator or a common longitude.
One is the starting point, the other the final point. At the starting point, I point with
a compass15 towards the final point and note the position of the needle, that is pointing
towards north. Then, I move to the final point. having arrived, I point the compass back
towards the starting point, then turn it 180 degrees, so that it again points into the same
direction as before, in my humble opinion16. I note the current position of the needle...

The position of the needs at the final point is differing from the position noted at the
starting point! Why? Well, I moved in my “flat” world, without regard for the geographic
grid. “Along a straight line” means that I went on my way to the final point along a great
circle – and that I also point the compass along that circle. If I fixed a course (e.g. strictly
east) and followed that with the help of the compass, I would not have gone on a straight
line, but along a circle around the pole17.

The difference of the north directions should be apparent in Figure 3.5. At the final point,
the direction that pointed to north at the starting point, does not point to the north anymore
– same for the east direction, which is always locally orthogonal to the north.

One can show it in a less subtle way, observe Figure 3.6: Looking from far away in space at
the close neighborhood of the north pole, it is more than obvious that a wind towards the
north can come from greatly differing directions.

It is apparent as well, that, if am arbitrary number of people from arbitrary places start
going towards the north, they will meet in the end at the north pole. In planar geometry,
the parallel ways would never cross. On the other hand, two people can start on the same
latitude, each going into the direction of the other, east or west. If both would keep their
initial leaving direction, without “correcting” along the way using a compass, and thus

13It is more interesting when you also take into account the non-trivial pressure gradient.
14Except for the tiny problem at the poles, where no direction but the direction to the opposite pole is

defined, being totally degenerated on the plane.
15an ideal compass that indeed always indicates geographical north, or, alternatively, a real one that is always

tuned to the correct declination
16as ant on the earth surface, not knowing what north actually is supposed to mean on the sphere
17which is only the same at the equator
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3.5 The earth is round
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Figure 3.5: local pseudo-Cartesian coordinate system in global perspective
A coordinate system with great circles as main axes and the coordinates on the parallel
small circles, corresponding to the local view of a continued north and east direction. It
visualizes the changing meaning of the directions in geo coordinates. One the left side, the
view on the earth sphere, on the right a display in the individual Cartesian system.
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Figure 3.6: North is north?
All imagined south winds blow towards the north in this orthographic view... and they
clearly point in different directions!
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3 From the wind field to the transported ensemble

moving along a great circle, they could be lucky and meet at the two crossing points of their
great circles, if they matched their pace closely. A meeting is not guaranteed at all.

3.6 The local transformation

The interpolation and integration in the geographical grid is no valid option for me. There-
fore, the main focus is on computing the integration steps in a local coordinate system. The
first incarnation of this system is an orthographic projection around the current position of
the particle under consideration (sketched in Figure 3.7). Though the projection is neither
correct for area size nor for angles on a global scale, it is very close to that in the local vicin-
ity. Also, circles around the starting position keep their shape; distortions of the projection
are the same in each direction.

x

y φ

R
R

θ
P’

P

Figure 3.7: Sketch of the local orthographic projection.

In the following passages, the transformation on the surface – the vertical pressure coordinate
is kept unchanged – is described. I want to express a point (λ, θ) in the coordinates (x, y)
of the orthographic projection over a specific point P = (λp, βp).

Precursor of the actual projection is a transformation of the geographic coordinates (λ, β on
the earth surface (as ideal sphere) into Cartesian (x, y, z) with the z axis leading through
the earth core and the point P . This z coordinate has its meaning for fulfilling the spherical
geometry and is used for the back transformation, while the actual projection is nothing
else than replacing that z with the pressure coordinate. The thickness of the atmosphere is
neglected compared to the earth radius18

18A more advanced projection may include the height over the earth surface, but that does not seem sensible
in this case here.
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3.6 The local transformation

3.6.1 Equivalent representation in the rotated Cartesian system

The translation of a point on the sphere into the Cartesian system oriented towards P is
executed in three stages. Beginning with the initial coordinates (λ, β) of the to-be translated
point as well as the wind directions ~eu and ~ev in the geographic system, the intermediate
values of stage i (not necessarily changed) are denoted (λi, βi) or ~xi = (xi, yi, zi); the wind
directions ~eu,i and ~ev,i. At the end of the view in the rotated Cartesian system we have

~x3 =

x3

y3

z3

 ; ~eu,3 =

ux,3

uy,3

uz,3

 ; ~ev,3 =

vx,3

vy,3

vz,3
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Nullmeridian
P

Nordpol
Südpol

Figure 3.8: Local transformation, stage 0
This is the initial situation in the geographic system with the arbitrary point P and em-
phasized prime meridian and equator.

The stages themselves consist of a first rotation in stage 1 (aligning the to-be-defined x
axis), the change to a Cartesian system in stage 2 and, at last, the rotation of that Cartesian
system around the x axis, to direct the z axis through P .

Stage 1: Rotation around polar axis, new prime meridian

The first rotation revolves simply around the polar axis and ensures that the final rotation
will be along a coordinate axis (the x one). Let

λ1(λ, β) = λ− λp −
π

2
(3.23)

β1(λ, β) = β

The wind directions are untouched by this, ~eu,1 = ~eu; ~ev,1 = ~ev. In the system of stage 1, P
has the coordinates (−π

2 , βp, R).
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Äquator
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neuer Nullmeridian
pos. x2-Achse
pos. y2-Achse
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Nordpol
Südpol

x2

y2
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Figure 3.9: Local transformation, stage 1 and 2
Here, the first rotation (stage 1) and the definition of Cartesian coordinates (stage 2) are
shown together.

Stage 2: Definition eines kartesischen Systems für die Kugel

Before performing the second rotation, I convert the spherical coordinates into three-dimensional
Cartesian coordinates (see Figure 3.9).

x2(λ1, β1) = R · cos β1 · cos λ1 (3.24)
y2(λ1, β1) = R · cos β1 · sinλ1

z2(λ1, β1) = R · sinβ1

The origin is the earth center, the positive x2 axis runs through the longitude 0 in the equator
plane, the positive y2 axis through the longitude π

2 (90◦) and the positive z2 axis through
the north pole.

Now look at the wind directions is due; north and east direction need to be projected onto the
Cartesian axes, depending on location. I need ~eu,1(λ1, β1) and ~ev,1(λ1, β1) in the Cartesian
system to be able to transform them with the coordinates in the next stage.

The east direction ~eu is always parallel to the equator, thus the z2 component is equal to
zero, since the x2 axis is identical to the polar axis. Subsequently, the east direction in the
Cartesian system of stage 2 is given by

~eu,2(λ1, β1) =

− sinλ1

cos λ1

0

 (3.25)

This is a normed unit vector: |~eu,2| =
√

sin2λ1 + cos2 λ1 =
√

1 = 1

The north direction on the sphere is not that simple. There are components for all three
Cartesian directions. But one can approach that step-by-step. Looking at the north unit
vector...

ev,z,2 = cos β1

ev,xy,2 = − sinβ1
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3.6 The local transformation

(ev,xy,2 < 0 means: pointing towards the origin)

The xy component is portioned out depending on λ1:

ev,x,2 = cos λ1ev,xy,2 = − cos λ1 sinβ1

ev,y,2 = sinλ1ev,xy,2 = − sinλ1 sinβ1

As a whole:

~ev,2(λ1, β1) =

− cos λ1 sinβ1

− sinλ1 sinβ1

cos β1

 (3.26)

I check the norm of this unit vector:

|~ev,2| = cos2 λ1 sin2 β1 + sin2 λ1 sin2 β1 + cos2 β1

= (1− sin2 λ1) sin2 β1 + sin2 λ1 sin2 β1 + cos2 β1

= sin2 β1 + cos2 β1

= 1

The unit vectors for the wind directions are defined now; the horizontal wind blows along

~v(λ1, β1) = u ·~eu,2(λ1, β1) + v ·~ev,2(λ1, β1) (3.27)

Stufe 3: Drehung um x-Achse

z3

alter Äquator
ganz neuer Äquator
alter Nullmeridian

neuer Nullmeridian
ganz neuer Nullmeridian

pos. x3-Achse
pos. y3-Achse
pos. z3-Achse

P
Nordpol
Südpolx3

y3

z3

Figure 3.10: Local transformation, stage 3
The last rotation around the x2 axis (identical with x3 axis) leads to stage 3. The “ganz
neue” prime meridian is included to help the orientation — strictly speaking, it does not
exist in the system of stage 3, which is only given in Cartesian coordinates.
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3 From the wind field to the transported ensemble

At last, the system need to be rotated towards P , by the angle π
2 − βp around the x axis.

Common knowledge knows the rotation matrix Dα in R3 for the rotation with the angle α
around the x axis anti-clockwise and the inverse D−α for the clockwise rotation.

Dα =

1 0 0
0 cos α − sinα
0 sinα cos α

 (3.28)

D−α =

1 0 0
0 cos(−α) − sin(−α)
0 sin(−α) cos(−α)

 =

1 0 0
0 cos α sinα
0 − sinα cos α

 (3.29)

I want to rotate the coordinate system from the north pole to P – anti-clockwise. That
means, I rotate the coordinates clockwise. The absolute value of the angle is the latitude
difference from the north pole to P , α = π

2−βp. For the simplification of the rotation matrix,
the following identities are helpful:

cos
(π

2
− γ
)

= sin γ (3.30)

sin
(π

2
− γ
)

= cos γ

It follows the rotation matrix for the stage 3, D−(π2−βp):

D3 =

1 0 0
0 cos(π

2 − βp) sin(π
2 − βp)

0 − sin(π
2 − βp) cos(π

2 − βp)

 (3.31)

=

1 0 0
0 sinβp cos βp

0 − cos βp sinβp
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3.6 The local transformation

Together, those steps build the transformation of the global coordinates (λ, β) (on the earth
surface) into the local coordinates (x, y, z) with the earth center as origin.

~x3 =

x3

y3

z3

 = D3

x2

y2

z2

 =

1 0 0
0 sinβp cos βp

0 − cos βp sinβp

x2

y2

z2

 (3.32)

=

 x2

y2 sinβp + z2 cos βp

−y2 cos βp + z2 sinβp

 =

 R · cos β1 · cos λ1

R · cos β1 · sinλ1 sinβp + R · sinβ1 cos βp

−R · cos β1 · sinλ1 cos βp + R · sinβ1 sinβp


= R

 cos β · cos(λ− λp − π
2 )

cos β · sin(λ− λp − π
2 ) sinβp + sinβ cos βp

− cos β · sin(λ− λp − π
2 ) cos βp + sinβ sinβp


~eu,3 = D3~eu,2 (3.33)

=

1 0 0
0 sinβp cos βp

0 − cos βp sinβp

− sinλ1

cos λ1

0

 =

 − sinλ1

sinβp cos λ1

− cos βp cos λ1


=

 − sin(λ− λp − π
2 )

sinβp cos(λ− λp − π
2 )

− cos βp cos(λ− λp − π
2 )


~ev,3 = D3~ev,2 =

1 0 0
0 sinβp cos βp

0 − cos βp sinβp

− cos λ1 sinβ
− sinλ1 sinβ

cos β

 (3.34)

=

 − cos λ1 sinβ
− sinβp sinλ1 sinβ + cos βp cos β
cos βp sinλ1 sinβ + sinβp cos β


=

 − cos(λ− λp − π
2 ) sinβ

− sinβp sin(λ− λp − π
2 ) sinβ + cos βp cos β

cos βp sin(λ− λp − π
2 ) sinβ + sinβp cos β



I consider it advisable to dwell here for a moment. An error can easily creep into such a
derivation; a sine instead of a cosine or just a plus instead of a minus19.

19 The human intellect is just not good at hard yes/no questions. Often you guesstimate and arrive at no,
while you actually mean yes.The human answer to “Yes or no?” can, realistically, only be “Maybe?”.
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3 From the wind field to the transported ensemble

Test: Spherical geometry

Up to now, only coordinate transformations have been carried out, without the projection.
Accordingly, ~x3 should be of length R – in case the transformation is correct. I test this:

|~x3| =
√

x2
3 + y2

3 + z2
3 = R ·

((x3

R

)2
+
(y3

R

)2
+
(z3

R

)2
)− 1

2

⇒
(
|~x3|
R

)2

=
(
cos β · cos(λ− λp −

π

2
)
)2

+
(
cos β · sin(λ− λp −

π

2
) sinβp + sinβ cos βp

)2

+
(
− cos β · sin(λ− λp −

π

2
) cos βp + sinβ sinβp

)2

= cos2 β
(
cos2(λ− λp −

π

2
) + sin2(λ− λp −

π

2
)(sin2 βp + cos2 βp)

)
︸ ︷︷ ︸

=1

+2 cos β · sin(λ− λp −
π

2
) sinβp sinβ cos βp

−2 cos β · sin(λ− λp −
π

2
) cos βp sinβ sinβp

+sin2 β(sin2 βp + cos2 βp)
= cos2 β + sin2 β = 1

It is the case. Good to see. I will cover some further special test cases at P and its counter
pole P ′ = (λp +π,−βp). This counter pole is outside the scope of the following orthographic
projection, but needs to be correctly handled by the globally valid coordinate transformation.

Tests at P and counter pole P ′

I consider the transformation of place and wind at P with

λ = λp; β = βp

λ1 = λp − λp − π
2 = −π

2

and at the counter pole P ′ with

λ = λp + π; β = −βp

λ1 = λp + π − λp − π
2 = π

2

The expected values for the ~x3 coordinates of the two points as well as the corresponding
wind directions are obvious without explicit computation. Furthermore, λ1 = ±π

2 facilitates
quick resolution of the angular functions via cos

(
±π

2

)
= 0 and sin

(
±π

2

)
= ±1.
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3.6 The local transformation

Location of P For the transformation of the location of P I expect the ~x3 coordinates
(0, 0, R).

~x3(λp, βp) = R

 cos βp cos
(
−π

2

)
cos βp sin

(
−π

2

)
sinβp + sinβp cos βp

− cos βp sin
(
−π

2

)
cos βp + sinβp sinβp


= R

 0
− cos βp sinβp + sinβp cos βp

cos βp cos βp + sinβp sinβp

 =

0
0
R


South-wind at P The north direction at P should be translated to the y component of the
transformed vector.

⇒ ~ev,3(λp, βp) =

 − cos
(
−π

2

)
sinβ1

− sinβp sin
(
−π

2

)
sinβp + cos βp cos βp

cos βp sin
(
−π

2

)
sinβp + sinβp cos βp


=

 0
sinβp sinβp + cos βp cos βp

− cos βp sinβp + sinβp cos βp

 =

0
1
0


West-wind at P The east direction at P should be translated to the x component of the
transformed vector.

~eu,3(λp, βp) =

 − sin
(
−π

2

)
sinβp cos

(
−π

2

)
− cos βp cos

(
−π

2

)
 =

1
0
0


Location of P ′ For the transformation of the location of P ′ I expect the coordinates of P
with inverted z3.

~x3(λp + π,−βp) = R

 cos(−βp) cos π
2

cos(−βp) sin π
2 sinβp + sin(−βp) cos βp

− cos(−βp) sin π
2 cos βp + sin(−βp) sinβp


= R

 0
cos βp sinβp − sinβp cos βp

− cos βp cos βp − sinβp sinβp

 =

 0
0
−R


South-wind at P ′ The north direction at P ′ should, just like the one at P , be translated
to the y component of the transformed vector.

~ev,3(λp + π,−βp) =

 − cos π
2 sin(−βp)

− sinβp sin π
2 sin(−βp) + cos βp cos(−βp)

cos βp sin π
2 sin(−βp) + sin βp cos(−βp)


=

 0
sinβp sinβp + cos βp cos βp

− cos βp sinβp + sinβp cos βp

 =

0
1
0
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3 From the wind field to the transported ensemble

West-wind at P ′ The east direction at P ′ should be translated to the x component of
the transformed vector, but with negative sign, because east points to the exact opposite
direction on the other side of the earth.

~eu,3(λp + π,−βp) =

 − sin π
2

sinβp cos π
2

− cos βp cos π
2

 =

−1
0
0



3.6.2 Back-transformation into the geographical system

After performing the integration step in the local Cartesian system, the newly computed
location needs to be mapped back into the global geographical system. For that, I retrace
the stages backwards, starting with the rotation of stage 3. I must rotate back by the angle
π
2 − βp, which is equivalent to the inversion of D3. The resulting matrix for α = π

2 − βp is
written down in Equation 3.28.

~x2 = D−1~x3 =

1 0 0
0 cos(π

2 − βp) − sin(π
2 − βp)

0 sin(π
2 − βp) cos(π

2 − βp)

 ~x3 (3.35)

=

1 0 0
0 sinβp − cos βp

0 cos βp sinβp

 ~x3 =

 x3

y3 sinβp − z3 cos βp

y3 cos βp + z3 sinβp


After the backwards rotation, stage 2 needs to be reverted: The transformation from Carte-
sian into geographic spherical coordinates. The system Equation 3.24 needs to be resolved
for λ1 and β1.

G1 :
x2

R
= cos β1 · cos λ1 (3.36)

G2 :
y2

R
= cos β1 · sinλ1

G3 :
z2

R
= sinβ1

The solution is found over the tangent function; I look for

tanλ1 =
sinλ1

cos λ1

tanβ1 =
sinβ1

cos β1

what is quickly successful for λ1:

G2/G1 :
sinλ1

cos λ1
=

y2

x2
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3.6 The local transformation

For β1 we need a bit more work:

G12 :
x2

2

R2
= cos2 β1 cos2 λ1

G22 :
y2
2

R2
= cos2 β1 sin2 λ1

G12 + G22 :
1

R2
(x2

2 + y2
2) = cos2 β1 (sin2 λ1 + cos2 λ1)︸ ︷︷ ︸

=1

= cos2 β1

G3√
G12 + G22

:
z2√

x2
2 + y2

2

=
sinβ1

cos β1

So, both tangent values are found and the angles are given by:

tanλ1 =
sinλ1

cos λ1
=

y2

x2
(3.37)

tanβ1 =
sinβ1

cos β1
=

z2√
x2

2 + y2
2

In the literature (see [Bronstein2000]), one can find the conversion from Cartesian to “math-
ematical” spherical coordinates, differing from geographical coordinates:

tanλ =
y

x
(3.38)

tanβ =

√
x2 + y2

z

This can be identified with the geographical coordinates used here, by invoking the definition
of the latitude β and using Equation 3.30:

βgeo =
π

2
− βmath

⇒ sinβgeo = sin
(π

2
− βmath

)
= cos βmath

cos βgeo = cos
(π

2
− βmath

)
= sinβmath

⇒ tanβgeo =
sinβgeo

cos βgeo
=

cos βmath

sinβmath
= (tan βmath)

−1

The tangent inversion The arctan function will produce angles again, out of the Cartesian
coordinates. By definition, that function is only definite when restricted to a certain interval.
Since I aim for the work with electronic computing devices, I do not concentrate just on
theoretical (albeit sensible) conventions, but rather ask the machine directly. That results
in20:

shell$ rechne ’atan(0)’
0
shell$ rechne ’atan(1000)’

20rechne is a Perl program that evaluates the given formula and prints out the result. It is using the same
C library functions as my trajectory program.
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3 From the wind field to the transported ensemble

1.56979632712823
shell$ rechne ’atan(-1000)’
-1.56979632712823

The practically chosen interval is thus

arctan : (−∞;∞) →
[
−π

2
;
π

2

]
(3.39)

This is also exactly what the ISO C90 standard21 specifies22

Out of

λ1 = arctan
y2

x2
(3.40)

β1 = arctan
z2√

x2
2 + y2

2

(3.41)

I directly get values for β1 inside the desired interval (β1 < 0 for z < 0 and β1 > 0 for z > 0)
and for λ1, I need to additionally check, if x2 < 0 ti decide whether the value out of

[
−π

2 ; π
2

]
needs to be shifted to the other side by π.

The trouble points: While you can define arctan for ±∞ to ±π
2 as well as here 0

0 = 0 and
get sensible values also for borderline ~x2, it is advisable to treat the corner cases specifically
regarding the programming of a computer. The computation Equation 3.41 is becoming
problematic when x2 and y2 are both zero. But then β1 is properly defined to be valued π

2
if z2 is positive and −π

2 if z2 is negative. Equation 3.40 becomes problematic if x2 equals
zero. Then, λ equals π

2 for positive y2 and −π
2 for negative y. In case both x2 and y2 being

equal to zero, the value of λ1 is irrelevant.

Well, having arrived back in the system of stage 1 with λ1 and θ1, then all it needs is

β = β1 (3.42)

λ = λ1 + λp +
π

2

to arrive at the normal geographic coordinates.

21ISO/IEC 9899-1990, Programming Languages - C
22One should neither blindly depend on the standard nor a specific implementation. That helps to prevent

nasty surprises.
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3.6 The local transformation

An algorithm for the complete back-transformation of the place from ~x3 to (λ, β), including
the corner cases, is laid out in Equation 3.43:

x2 = x3

y2 = y3 sinβp − z3 cos βp

z2 = y3 cos βp + z3 sinβp

x2 = 0

?

λ1 =
(
y2 > 0 ? π

2 : − π
2

)
y2 = 0

? β1 =
(
z2 > 0 ? π

2 : − π
2

)
: β1 = arctan z2√

x2
2+y2

2

= arctan z2
y2

:
λ1 = arctan y2

x2
+ (x2 < 0 ? π : 0)

β1 = arctan z2√
x2
2+y2

2

λ = λ1 + λp + π
2

β = β1

(3.43)

For x2 = 0, the longitude is set to π
2 for positive y2 and −π

2 for negative y2. If also y2 = 0,
we are located at one of the poles, where the longitude can be arbitrarily chosen and the
latitude is fixed at π

2 for positive z2 (north pole) and −π
2 for negative z (south pole).

Even though IEEE floating point math includes some treatment of division by 0, it is safer
to treat the obvious cases explicitly. Especially, 0/0 would lead to NaN otherwise, which is
not helpful.

In addition, there is the correct determination of λ1 – for x2 < 0 it is the counter angle on
the other side of the globe.

3.6.3 Orthographic projection, transformation forwards and backwards

The actual orthographic projection is the simple ignoring of the z3 coordinate (projection
from infinite distance onto the x3y3 plane), the geometric view of the local movement on a
xy tangential plane around the center of interest, P . Instead of z3 the pressure coordinate
in the athmosphere, which has been treated as flat in the transformation, is used23.

The work coordinates are

~x =

x
y
p

 (3.44)

with the pressure p as third coordinate, with the velocity

~̇x =

ueu,x + vev,x

ueu,y + vev,y

w

 (3.45)

An integration step results in new coordinates x, y and p, while p stays unchanged during
the back-transformation into the global system and x, y lead to λ, β. A z is needed for that
23Update: This is different in more recent versions of the PEP-Tracer software.
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3 From the wind field to the transported ensemble

back-transformation in an indirect way: It is preserving the fixed distance from the earth
center, the earth radius R.

z2 = R2 − (x2 + y2)
z = +

√
(R2 − (x2 + y2)) (3.46)

This is used instead of the “real” z3. Behind the choice of the positive root hides the
limitation on the hemisphere around P , only dealing with locations that are at most a
quarter earth circumference away from P . Since this is about a local coordinate system, that
poses no problem – I will not consider computations that include movements of thousands
of kilometers for one local integration step.

To summarize: The transformation for the basis point P (λp, βp) and the coordinates ~r =
(λ, β, p) in the global system and ~x = (x, y, p) in the local system.

Location – forward It begins with a rotation around the polar axis, introducing the angles
λ1 and β1 (while β1 = β). Then the reinterpretation of the world in Cartesian coordinates
follows: ~x2. Last step is the rotation of the system in those coordinates by the angle π

2 −βp:
~x3. In the end, we have the local coordinates ~x, which consist of the first two components
of ~x3 and the unchanged pressure coordinate p.

~x =

 R cos β · cos(λ− λp − π
2 )

R
(
cos β · sin(λ− λp − π

2 ) sinβp + sinβ cos βp

)
p

 (3.47)

Location – backward One needs to keep in mind that, here, instead of z the spherical
condition 3.46 is to be used.

λ = arctan

(
y sinβp −

√
(R2 − (x2 + y2)) cos βp

x

)
+ λp +

π

2
(3.48)

+ (x < 0 ? π : 0)

β = arctan

 y cos βp +
√

(R2 − (x2 + y2)) sinβp√
(x)2 +

(
y sinβp −

√
(R2 − (x2 + y2)) cos βp

)2

 (3.49)
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3.7 3D integration in the local system

Wind Also here, we do not let the horizontal wind (global: u and v) blow in z (or rather p)
direction. The local 3D wind consists of projections of u and v together with the unchanged
vertical component ω.

~eu =

 − sin(λ− λp − π
2 )

sinβp cos(λ− λp − π
2 )

0


~ev =

 − cos(λ− λp − π
2 ) sinβ

− sinβp sin(λ− λp − π
2 ) sinβ + cos βp cos β

0


~ew =

0
0
1


~̇x = u~eu + v~ev + w~ew (3.50)

=

 −u sin(λ− λp − π
2 )− v cos(λ− λp − π

2 ) sinβ
u sinβp cos(λ− λp − π

2 ) + v
(
− sinβp sin(λ− λp − π

2 ) sinβ + cos βp cos β
)

w



3.7 3D integration in the local system

Now I have Equation 3.47 up to Equation 3.50 to work in a local system around point
P0 = (λ0, β0, p0). What do I do with that? I want to get from P0 to P1 in an integration
step (time step ∆t). The basic algorithm is laid out in three stages:

1. Change into the local Cartesian system: P0 = (λ0, β0, p0) → (0, 0, p0)lok
2. Integration step to (x1, y1, p1)lok = (∆x,∆y, p + ∆p)lok
3. Change to global system: (x1, y1, p1)lok → (λ1, β1, p1) = P1

In the course of the integration I will need interpolated wind speeds at different locations
Q = (x, y, p)lok in the local system. For that I need Q = (λ(x, y), β(x, y), p) in the global
system, to find the encompassing grid points24 Gn(λn, βn, pn) in the coordinate space of the
wind data source as well as read out the winds ~̇rn themselves. In the local system those
are Gn = (xn(λn, βn), yn(λn, βn))lok and ~̇xn. Due to the coordinate transformation, at least
the horizontal grid cells are not rectangular anymore and in vicinity of the poles they are
resembling circles instead. Thus, the simple linear interpolation from Equation 3.13 can only
be used in height and time. In the xy plane its place is taken over by the distance-weighted
sum out of Equation 3.18, which can work with arbitrary distribution of points25.

The function ensemble_rk4::single_step() in Listing 3.6 unifies these building steps and
shows some moves (of simulated air parcels). The coordinate system is hidden behind an
abstraction. It can also be just the identity with the global system, so that this routine can
be employed for the plain integration in the geographical grid, too.

24usually the 16 corners of the space-time grid cell, at the poles all points with the northernmost or south-
ernmost latitude

25An envisioned improvement is the inclusion of the closeness of the grid points to each other.
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3 From the wind field to the transported ensemble

Listing 3.6: Single RK4 integration step

1 void ensemble_rk4 : : single_step ( place pos )
2 {
3 place workplace ; // sc ra t ch v a r i a b l e f o r p l ace ( x )
4 place localstart ; // s t a r t p l a ce in l o c a l system
5 spaceplace k [ 4 ] ; // the RK4 c o e f f i c i e n t s
6 spaceplace half ; // sc ra t ch var f o r k/2
7 home−>system−>set_base ( pos ) ; // move l o c a l system
8 home−>system−>lplace (pos , localstart ) ; // ge t l o c a l coord ina t e s
9 // k1 = h* f ( x0 , y0 )

10 i f (home−>get_lwind ( localstart , k [ 0 ] ) ) // ge t l o c a l wind
11 {
12 smul_space (k [ 0 ] , timestep , k [ 0 ] ) ;
13 // k2 = h* f ( x0+h/2 , y0+k1 /2)
14 sdiv_space (k [ 0 ] , 2 , half ) ;
15 add_space ( localstart , half , workplace )
16 workplace [ TIME ] = localstart [ TIME ]+timestep /2 ;
17 i f (home−>get_lwind ( workplace , k [ 1 ] ) )
18 {
19 smul_space (k [ 1 ] , timestep , k [ 1 ] ) ;
20 // k3 = h* f ( x0+h/2 , y0+k2 /2)
21 sdiv_space (k [ 1 ] , 2 , half ) ;
22 add_space ( localstart , half , workplace ) ;
23 // s t i l l : workp lace [TIME] = l o c a l s t a r t [TIME]+ t imes t ep /2;
24 i f (home−>get_lwind ( workplace , k [ 2 ] ) )
25 {
26 smul_space (k [ 2 ] , timestep , k [ 2 ] ) ;
27 // k4 = h* f ( x0+h , y0+k3 )
28 add_space ( localstart , k [ 2 ] , workplace ) ;
29 workplace [ TIME ] = localstart [ TIME ]+timestep ;
30 i f (home−>get_lwind ( workplace , k [ 3 ] ) )
31 {
32 smul_space (k [ 3 ] , timestep , k [ 3 ] ) ;
33 // x1 = x0 + ( k0 + 2k1 + 2 k2 + k3 ) /6
34 for ( s ize t i = 0 ; i < SPACEDIMS ; ++i )
35 workplace [ i ] = localstart [ i ]
36 + (k [ 0 ] [ i ] + k [ 1 ] [ i ]*2 + k [ 2 ] [ i ]*2 + k [ 3 ] [ i

] ) /6 ;
37
38 home−>system−>gplace ( workplace , pos ) ;
39 } } } } }
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3.7 3D integration in the local system

This routine is embedded in a class ensemble_rk4, which represents a sub-ensemble of parti-
cles together. Using the classes egp_wind as introduced in section 2.2 (behind the abstraction
of the data interface), ensemble_rk4 (behind the ensemble interface), the local coordinate
transformation in flat_pressure (coordinates) and world (default implementation of the
world interface) to connect data, coordinates and interpolation, few program code lines are
enough to execute a large-scale numerical tracer experiment. (Listing 3.7).

A remark to the large scale: You can scale properly by dividing the overall ensemble into
partial ensembles (blocks) to facilitate serial (to fit into computer memory, manage smaller
files) or parallel (using a cluster) work. Block sizes in use for my experiments are between
1000 and 100,000 particles; the performance optimum depends on parameters like the CPU
cache size.

Listing 3.7: Prototype of a tracer experiment

1 // parameters
2 pep t begin = START_TIME ;
3 pep t end = END_TIME ;
4 pep t step = TIMESTEP ;
5 long nsteps = ( long ) ( ( end−begin ) /step ) ;
6 pep t members = NUMBER_OF_PARTICLES ;
7 // compute/ s e t the s t a r t i n g p o s i t i o n s somehow
8 spaceplace *start = GET_START_POS ( NUMBER_OF_PARTICLES ) ;
9 // data source f o r ECHO−GiSP NetCDF f i l e s

10 data *pepper = new egp_wind ; // cou ld be some d i f f e r e n t source
. . .

11 pepper−>init ( datafiles , number_of_files ) ;
12 world *w = new world ; // the d e f a u l t world wi th l o k a l

coord ina t e s
13 coordinates *s = new flat_pressure ; // the coord ina te

t rans format ions
14 // connect the world wi th coord ina t e s and data source
15 w−>set_system (s ) ;
16 w−>set_source ( pepper ) ;
17 // crea t e the ensemble and p lace i t i n t o our world
18 ensemble *p = new ensemble_rk4 ;
19 p−>set_home (w ) ;
20 p−>set_timestep ( step ) ;
21 p−>set_starttime ( begin )
22 p−>set_members ( members ) ;
23 p−>beam ( start ) ; // s e t the s t a r t i n g p o s i t i o n s
24 do
25 {
26 p−>step ( ) ; // advance the ensemble one t imes t ep
27 do_something_with (p−>position ) ;
28 }
29 while (p−>steps < nsteps ) ;
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4 Global ensembles

4.1 Starting positions

After having resolved how the movement happens, the question aboutwhat to move arises.
This question is reduced to the starting position at a certain time for the passive tracers1

under consideration. For the ensemble: many starting positions in a predefined range. When
I want to undertake quantitative investigations of mixing of air masses of differing origin or
the distribution of air from a limited starting region, I need to associate some weight /
represented air mass with the particles (sub-ensembles) or simply manage to make them all
represent the same mass so that simple counts have a direct meaning.

In approximation, one can treat the air density in one pressure level as constant. But one
cannot ignore the vertical density gradient (barometric formula!).

The biggest possible picture concerns ensembles distributed over whole air layers or over
the whole world (as covered by the data source). Later investigations will probably be
dealing with more local scope (limited starting regions), e.g. to achieve higher resolution
and more reliable mass relations. The global view, once worked out, provides a basis that
can be simplified on demand. Indeed I begin with global runs, using ensembles distributed
throughout the whole atmosphere, within the limits of available storage space, to evaluate
global transport features; as basic evaluation of the method. The global evolution of the
mass distribution by the global transport enables a comparison with the density that can be
derived from ECHO-GiSP data. Ideally, the climate model and the Lagrangian transport
computation should agree over the distribution of air mass – in reality that means that they
should show a reasonable ratio that stays valid for a certain time.

4.1.1 Global starting positions in a level (dh)

In the horizontal, evenly distributed starting positions on the surface form a sensible ansatz.
Neglecting the variation in density on the level, that ensures the same weight for each particle.
The relations of particle counts in a region indicate the relations of air masses. Even if density
variations are to be considered in future, the even distribution starting positions according
to a mean density is a good starting point.

A simple deterministic positioning on the surface follows from the fixation of starting posi-
tions on latitude circles while scaling the number of positions with the circumference of these
circles. The identifying parameter for this positioning is the even number h, determining the
number of starting positions on the equator. I use the naming scheme dh for the positioning
with parameter h. So, “d180” denotes the positioning with 180 positions on the equator and

1The term of the passive tracer means means a specific air mass that resides at a specific place (or its
vicinity, see section 5.2) at the starting time.
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4 Global ensembles

“d1000” the positioning with 1000 of these. Two formulas for β and λ define the individual
positions.

Startbreiten für h=20

Längenkreis
Breitenkreise

Schnittpunkte

Figure 4.1: Even partition of latitudes
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λa,o = o ·

2π

ganz (h · cosβa)
− π; o ∈ [0; ganz (h cos βa)− 1]

(λ ∈ [−π;π) λ ∈ [−180◦; 180◦), h even number)

I distribute h
2 latitude circles spaced by 2π

h from each other.[
−π
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π

2h
;
π

2
− π
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]
That means that the prolongation of a meridian to a full circle has h crossings with these
latitude circles with uniform distance of R 2π

h . (in meters) – also over the poles, like depicted
in Figure 4.1. On these latitude circles, positions λo are set, spaced via

rb(βa)
2π

ganz (h · cosβa)
= R cos βa

2π

ganz (h · cosβa)

For big h, where ganz (h · cosβa) ≈ h · cosβa, this spacing is the same as the spacing in
latitude direction:

R cos βa
2π

ganz (h · cosβa)
h>>1
≈ R cos βa

2π

h · cosβa
= R

2π

h
(4.2)

This positioning provides, for not too small h, starting positions with the same distance
– in meters – to the next neighbor. With different wording: The positions are uniformly
distributed on the sphere surface and I begin with an approximately constant area density
of particles.
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Figure 4.2: Comparison of number of positions in dh with h2

π

The value of h is a direct measure for the area density. It is defined as the one-dimensional
density of starting positions on the equator, h positions on one earth circumference, ruling
the one-dimensional density h (2πR)−1. The positioning is constructed to achieve the same
one-dimensional density in latitude direction, so that the area density, for sufficiently large
h, is given by h2 (2πR)−2. A simple test of the uniformity of the dh positioning consists
of the comparison of the total number of particles on the surface compared with the ex-
pected analytical value for uniform density, h2 (2πR)−2

· 4πR2 = h2π−1. Figure 4.2 shows
appropriate agreement2.

4.1.2 Starting positions in whole atmosphere (dh-v)

In the vertical direction one would need to lower the density of starting positions according
to the exponentially decreasing air density. But this is not practical. Either you have no
particles at all or just too few of them in higher levels to be able to trace the dynamics, or
you have to compute just too many particles in the lower levels.

My implemented approach for a global positioning is based on the prescribed pressure levels
from the ECHO-GiSP data and sub levels placed according to a parameter v. The notation
dh-v means the the distribution of v starting levels of the positioning dh for each of the np

pressure levels of the model data (but not above the topmost level).

pnp,1 = pnp ; ∀k ∈ [1, np − 1] : ∀i ∈ [1; v] : pk,i = pk + (i− 1)
pk+1 − pk

v

This placement developed out of the simplest one that just took the model levels. In future,
this will probably be replaced by a consistent logarithmic placement of levels3.

The whole positioning scheme with np · v layers gets name dh-v. In the next chapter, I will
analyze d210-3 and d1000-3 runs, meaning each 3 starting levels per model level and 210

2Exact agreement is not possible as I do not place fractions of particles but only whole particles.
3Update: This is the case in later PEP-Tracer versions.
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Figure 4.3: View on the horizontal and vertical positioning of d210-3
Depending on print quality, the horizontal start positioning on the left side should appear

as many uniformly distributed particles or just as a colored area.

and 1000 particles per great circle, respectively. An impression of d210-3 shall be delivered
by Figure 4.3 geben.

4.2 10 days of to transport

Now it has been settled how and by which means what is transported.
How: A method for integration of trajectories has been developed, accumulated in the
program ensemble_run, which in essence shares the work flow with Listing 3.7. Means: I
have access to the wind fields from ECHO-GiSP through the interface of egp_wind. What:
With dh-v, a system for the creation of global and local particle ensembles with homogeneous
horizontal density in a pressure level4 is given.

To demonstrate the scheme, I show views on some test runs5, that I am creating on my
laptop Neuling just now, while writing this. This is no problem for the chosen particle
counts (up to 8744) and the number of integration intervals (200 with time step of 0.05 days
and ten days whole duration). The computing time is just a few minutes6.

The first views dwell on the development of two global d160 positionings on one pressure
level in the troposphere (850hPa, Figure 4.4) and one in he stratosphere (10hPa, Figure 4.5),
respectively. The snapshots in horizontal view at least indicate the differing characteristics
of the dynamics in these air layers. The movement out of 10hPa is dominated by the polar
vortex, while out of 850hPa there is rather small-scale mixing. But for both the zonal
channeling of the winds and thus the equator as transport barrier is strongly evident, at
least for the time scale of up to ten days.

4In disregard of the actually varying air density in one pressure level. I will come back to that in the next
chapter.

5The computations run during the first days of the model year 1965, with wind data from the interactive
run.

6Quoting ensemble_run: “Statistics: 8110 trajectories of 200 steps in 157 seconds (0.0193588s per trajectory,
10331.2ss/s)”, so, below three minutes for 8110 trajectories of 200 time steps.
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Figure 4.4: 10 days of transport of d160 in 850hPa
Each particle of the ensemble (8110 altogether) is depicted by a colored symbol. The color
of the symbol encodes its origin in one of the quadrants (northwest, northeast, southwest
and southeast). This coloring provides a simple but effective visualization of the mixing
dynamics in north-south as well as east-west direction.
Please keep in mind that the 850hPa denote only the starting level of the ensemble — the
transport is executed in three dimensions. Consequently, this is no mixing of particles in
850hPa, but particles out of 850hPa.
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Figure 4.5: 10 days of transport of d160 in 10hPa
Each particle of the ensemble (8110 altogether) is depicted by a colored symbol. The color
of the symbol encodes its origin in one of the quadrants (northwest, northeast, southwest
and southeast). This coloring provides a simple but effective visualization of the mixing
dynamics in north-south as well as east-west direction.
Please keep in mind that the 10hPa denote only the starting level of the ensemble — the
transport is executed in three dimensions. Consequently, this is no mixing of particles
in 10hPa, but particles out of 10hPa. The next figure, Figure 4.6, definitely shows the
existence of vertical transport.
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4.2 10 days of to transport

The convective up-transport at the equator is the topic of Figure 4.6, where an excerpt of a
d400 ensemble in 850hPa between latitudes of −10◦N and 10◦N is advected. It is plain to
see that particles are driven up towards the tropopause.

The insights are preliminary concluded by two horizontally local, but extended over the
height from 1000hPa up to 0.01, ensembles, each inside a circle of 5◦N around the north or
south pole, respectively, in Figure 4.7 and Figure 4.8. The plots show the in-mixing of polar
air into lower latitudes without distinction for source height. The differing situation on the
north and south side are discernible. From the south pole, the distribution is formed by a
symmetric vortex, while the asymmetry in the north is evident from the beginning.

Those are some qualitative impressions, that mainly testify that the implemented Lagrangian
advection scheme works so far. Known transport structures in the atmosphere are reproduced
— I am on the right path.
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Figure 4.6: Convective up-welling in the tropics
The ensemble of 8744 particles starts at p = 850hPa and β ∈ [−10; 10] (distributed over all
longitudes) and is subject to convective up-welling in the central tropics.
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4.2 10 days of to transport

Figure 4.7: Distribution from north pole in 10 days
3216 particles from all layers of the climate model experience distribution out of the close
vicinity of the north. The temporal order is the same as before: form left to right, from
top to down: beginnig, after 0.2, 0.5, 2, 5 and 10 days.
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Figure 4.8: Distribution from south pole in 10 days
3216 particles from all layers of the climate model experience distribution out of the close
vicinity of the south. The temporal order is the same as before: form left to right, from
top to down: beginning, after 0.2, 0.5, 2, 5 and 10 days.
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5 Mass consistency with the climate model

5.1 First global runs up to 80 years

The long-term goal of my work is the analysis of long-time transport structures — barriers,
mixing ratios, distant connection. A necessary step in this direction are complete global
computations with low (achievable) resolution in space and time. Before entering the details,
I want to have drawn the global picture. I chose the 80-year time span from 1965 to 2044 out
of the 80 years of available data for this long-time picture. The first 15 years (1950 to 1964)
I leave as transitive phase1. Now, there are in all four global transport runs, consisting of

� 80 years with d210-3 (ca. 1 · 106 particles) with a time step of 0.1d and storage of
positions each month2 and

� 1 year with d1000-3 (ca. 21 · 106 particles), also with a time step of 0.1d, but storage
every day,

each once driven by wind fields of the ECHO-GiSP reference run and once by those of the
interactively coupled one. These are really quite rough overview runs for a start. Also, I
intend to undertake future computations with smaller time step – a tenth of a day is rather
large.

The d1000-3 runs became possible through the investment in the RAID server Atlas, which
provides the necessary storage space for a year of d1000-3 with daily snapshots. That space
amounts to 356GiB. Actually, this number does not look as scary now as it did just a few
years ago. A sign of the times is also, that we can handle these amounts of data on relatively
cheap ATA hard disks; there is no need for an elaborate and slower tape archive system3

The question of sensible visualization is posed after computing those ensemble. A first
approach are plots with projected dots (or point-like symbols) like in Figure 4.5, or the
zonal view like Figure 4.6. Coloration of points depending on their origin can provide an
impression of the mixing. But especially for the important zonal view (vertical and north-
south transport), that is very problematic. Two aspects prohibit quantitative statements:

� Particles from different source regions, especially different heights, represent different
air mass. A dot is a dot — there is no room for relative weighting. Without some
equalization, the upper air masses look deserted very quickly, because of many — light
— particles move into the lower levels and few — but heavy — particles come up from
there.

1The time span from the start of the model that is needed for the “spin-up” towards a usable state.
2each 30 days, according to the 360 model days per year
3That may be needed for long-time storage, but for the mid-term storage and especially active usage, hard

disks are in advantage.
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5 Mass consistency with the climate model

� The aggregation of all points on a latitude leaves the impression that air mass is
concentrated from the poles to the equator. Better is a view that provides longitude
means according to the density. For the same mass density, you need more particles
in the tropics, because they have to fill a bigger volume. In the end, I deem it sensible
to depict the density and not absolute mass.

A historic plot (Figure 5.1), which resembles one I presented as first example of the three-
dimensional integration a year ago at a working meeting, is subject to both issues: The
atmosphere concentrates above the tropic surface.

I see, that for a meaningful plot you need more than just distribution of many colored
points on the canvas. Also, I do not just want to make plots, I want to analyze the data
quantitatively. I compute the large number of trajectories to compute statistical measures
from them. The measure that is currently missing, is the weight of one particle, of one
sub-ensemble — the represented air mass. After assigning air mass to particles or groups of
them, respectively, I can arrive at meaningful numbers for mixing rations. The computation
of the represented air mass and the consistency comparison that is made possible through
that are the topics, with which I will conclude this Diploma thesis. I will not continue to
treat the 80 year long d210-3 run, but instead concentrate on the better resolution of the
d1000-3. Both runs contributed to [Orgis2007], though.

5.2 Quantification: Partition & Weight

For computing mixing rations out of the many individual trajectories, I need some definition
of source and target zones4. I must divide the atmosphere. In the defined parts, I can
compute measures from the number of particles that entered there. I can cover questions
of distribution of air from a certain source region during a certain time. Or the inverted
question: From which source region does which part of the air mass in a target region
originate?

To be able to quantitatively compare the air mass represented by particles at all, I need
to attach some weight to the particles. But even an exact density value (not available in
practice anyway) at the starting point would not be enough, because it is not practical to
distribute starting points vertically according to density. Like mentioned before, and later
visualized in Figure 5.7, the exponential density gradient prohibits a useful coverage of the
atmosphere in the upper layers, or just means too many particles in the lower layers. A
possible approach is the attachment of some weight by dividing the mass in zone among the
contained particles.

I invest some time in the question about the partitioning of the atmosphere that should be
used. The main interesting aspect is the sphere surface5 with the inhomogeneous coordinates.
In the vertical direction, there is little to say against the logarithmic division into layers, but
in the horizontal, the issue is less clear, when you consider some requirements.

The basic requirements for me is to separate the treatment of mass/density and mixing from
the systematic tightening of the coordinates towards the poles. When simply using cells of

4I use a generic term “zone” here for naming an arbitrary region in the atmosphere in 3D, or 2D on the
surface. This is not about fixed regions like subtropics or polar (climate) zone.

5Yes, idealized as sphere...
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5.2 Quantification: Partition & Weight

The particles have been started on
the marked layers; the color of a dot
tells the source layer.

Figure 5.1: Historic view on 180 days of an early 3D transport run
...with indication of stratospheric intrusion (arrow).
Every particle in the ensemble is depicted as a dot, without considering any difference in
the represented mass. Furthermore, all particles on one latitude are drawn together in
this zonal view. That, naturally, causes the visual concentration towards the equator —
together with the concentration on lower air layers because missing weight equalization.
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5 Mass consistency with the climate model

a grid in (λ, β) with fixed grid point distances ∆λ and ∆β (see Figure 5.2), the area of a
cell near the poles is much smaller of one near the equator6 This is problematic, because
that is a systematic difference in the uncertainty when computing air mass from counted
particles in the cell. Air density computed out of the particle ensemble in a cell near the
pole relies on a much lower number of particles in the smaller area. It is not sensible to do
statistical comparisons (like computation of mass density from particle number) on such a
differing basis. The saying advises against comparing apples and oranges — the comparison
of densities from differing cells of the simple grid is more like comparing apples to peas!

The difference between apples and peas lies mainly in the size. Oranges, however, are shaped
a bit differently and also feature a different taste7, but they are of similar size and thus a
definite improvement, compared to the peas. I can replace the differently shaped and very
differently sized zones by still differently shaped but uniformly sized zones using a more
flexible partition. Disregarding the shape, I can now calm down and compare apples with
oranges. They are not that different after all.

The goal is the partition of the earth surface into zones of same size. I will now present
two approaches for that, the second of these being the optimum that I will use later on.
After establishing the partition of the atmosphere in zones from the surface partition and
logarithmic partition of the height (pressure), I will come back to the question of assigning
air mass to these zones.

5.2.1 Embeddable Equipartition

An obvious possibility of areal equipartition of the surface is offered by the variation of the
latitude division. Instead of the fixed interval ∆β we use a variable latitude spacing —
towards the poles the latitude range covered by a zones is enlarged to compensate for cell
area.

On the sphere, the area of a zone with λ ∈ [λ0;λ1] and β ∈ [β0;β1] is given by

Areal =

β1∫
β0

(λ1 − λ0)R cos β ·Rdβ (5.1)

= (λ1 − λ0)R2 sinβ
∣∣β1

β0

R is a global constant and (λ1 − λ0) is the same for all zones for the fixed interval under
consideration. Because of that, I can normalize to the area of a hemisphere8 (or a segment
of it between λ0 and λ1) and simply consider

A(β0, β1) = sin β1 − sinβ0 (5.2)

The area follows the sine function between β0 and β1.

6The area between two latitude circles scales down according to the down-scaling of the latitude circumfer-
ence with cos β. At ∆β = 10◦N, the area of a cell with β ∈ [0◦N; 10◦N] has 11, 4 times the size as a cell
in β ∈ [80◦N; 90◦N].

7 Better? I will not decide that here...
8Normierte Gesamtoberfläche der Kugel ist gleich 2.
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5.2 Quantification: Partition & Weight

Figure 5.2: Division of earth surface into unequal regions with fixed grid
...doubling division with 2, 4, 8, 16, 32 and 64 regions. Zones near the poles are distinctively
smaller than those near the equator (beginning at third picture).
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5 Mass consistency with the climate model

Following that insight, the partition into latitude regions of same area is achieved by a fixed
increment in the sine of latitude. When I intend to divide the latitudes between B0 and B1

(B0 < B1) in a ranges, the borders βi; i ∈ [0; a] are given by

βi = asin
(

sinB0 +
i

a
(sinB1 − sinB0)

)
(5.3)

Especially for the whole sphere with B0 = −π
2 and B1 = π

2 , this is

βi = asin
(
−1 + 2

i

a

)
(5.4)

The longitude partition of the range from Λ0 to Λ1 in o parts is given directly by a fixed
interval

λi = Λ0 +
i

o
(Λ1 − Λ0) (5.5)

Again for the whole sphere from 0 to 2π:

λi = 2
i

o
π (5.6)

This grid defines a · o zones on the sphere surface, each featuring the same area.

Areal =
1
o
(2π − 0) ·R2

·

1
a

(
sin

π

2
− sin

(
−π

2

))
=

4π

oa
R2

One aspect inherited from the simple grid with constant ∆β is the embeddability of higher
resolved partitionings. when o or a are increased to a multiple, all formerly defined borders
βi and λi are still in use and there are just additional borders between these. This property
is used in Figure 5.3 to build the partition with o = a = 8 iteratively.

The property of same area per cell is given, but the adaption using only the latitude ranges
has a catch: The zones get thicker in latitude towards the poles. In the important zonal
view of the whole atmosphere (p−β plot, mean over λ). this means a loss in resolution, and
subsequently information, towards the poles. The poles are important — also in regard of
the fact that my work stands in the frame of the Pole - Equator - Pole project!

5.2.2 Balanced Equipartition (Zo-a)

The adaption of the zone area via the latitude thickness is not satisfying. Inclusion of the
longitude partition is the next step. I will give up the simple structure of homogeneous
longitude division, and thus the global grid. A variable number of longitude divisions (as
single zones) for the individual latitude range joins the the variation of latitude borders.
Less zones are put into the latitude ranges towards the poles, keeping the latitude extend
low while ensuring the uniform zone area. That maintains a higher resolution near the poles,
and overall more homogeneous at that, in the zonal view.

I name this partition of surface Zo-a, corresponding the number of latitude ranges a and
the maximum number (in the latitude range next to the equator) o of longitude ranges.
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5.2 Quantification: Partition & Weight

Figure 5.3: The first partitioning of the earth surface in zones of equal area
...with zone count doubling to 2, 4, 8, 16, 32 and 64 zones. The Equipartition is achieved
by sacrificing resolution near the poles.
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5 Mass consistency with the climate model

Figure 5.4: Balanced Equipartition
...to 2, 4, 8, 16, 32 and 64 zones. The chosen parameters (left to right, top to down) are
(o, a): (1, 2), (2, 3), (3, 4), (4, 6), (8, 6), (7, 14). This partitioning combines equal area with
approximately uniform latitude partition, at the loss of the simple partition into global
longitude intervals.
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5.2 Quantification: Partition & Weight

A remaining variable is the possible limitation of the overall longitude and latitude region
(Borders B0/1 and Λ0/1). When these border are not mentioned, then the partition of the
whole surface is meant (B0/1 = ±π

2 and Λ0 = 0∧Λ1 = 2π). In the (implicitly) given overall
region the parameters o and a define a partition unambiguously. In detail, the partition
consists of the latitude borders βi ∀i ∈ [0; a] and the longitude borders λi,j ∀i ∈ [0; a) ∧ j ∈
[1; zi] for each latitude range.
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5 Mass consistency with the climate model

The algorithm for the partition Zo-a

1. There exists the prescribed range: β0 = B0 < βa = B1 and Λ0 <= λi,k <= Λ1

2. Starting point is the ideally uniform partition of latitudes.

∆β =
βa − β0

a
; ∀i ∈ [1; a) : βi := β0 + i ·∆β

3. The relative9 gauge area A∗ for a single zone is determined by the partition of the
largest (in terms of surface area) latitude range out of this pattern.

A∗ :=
1
o

max {(sinβi+1 − sinβi) : i ∈ [0; a)}

Note: The global restriction of longitudes is irrelevant here, is is about relative weight-
ing of latitude ranges.

4. Initialization of the total zone count: Z := 0

5. The number zi of zones in the latitude range i is determined by A∗, the total count Z
being incremented iteratively:

∀i ∈ [0; a) : Li := Z
zi := rund

(
1

A∗ (sinβi+1 − sinβi)
)

zi = 0 ? zi := 1
Z := Z + zi

6. The actual relative single-zone area is computed from Z:

A† =
sinβa − sinβ0

Z

7. Using that value and the zi (Li are summed zi), the latitude borders are finally fixed
to new values10.

∀i ∈ [1; a) : βi := asin(sinβ0 + Li ·A
†)

8. At last, the longitude partition for each, now fixed, latitude range is executed. The
outer borders result from the computation in theory and one could spare the two
individual assignments. Instead, the possible error of four unnecessary computing
operations is intercepted by defining the edge of the world exactly.

∀i ∈ [0; a) : ∆λ := Λ1−Λ0
zi

λi,0 := Λ0

λi,zi := Λ1

∀j ∈ [1; zi) : λi,j := Λ0 + j ·∆λ

This routine is followed closely in the program (fragment in Listing 5.1) – with the exception
that the program first stores the sine values in β and replaces those with angles later.

9relative to the restricted longitude range; A∗/A∗real = 2π/(Λ1 − Λ0)
10The deviation from the ideal latitude partition is minimized by using large enough o
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5.2 Quantification: Partition & Weight

Listing 5.1: Zo-a partition

1 pep t step = (B1−B0 ) /a ; // D be ta
2 #define latsin latb
3 #define latarea (i ) ( latsin [ i+1]−latsin [ i ] )
4 latsin [ 0 ] = sin (B0 ) ; latsin [ a ] = sin (B1 ) ;
5 for ( s ize t i = 1 ; i < a ; ++i ) latsin [ i ] = sin (B0 + i*step ) ;
6 pep t onezone = 0 ;
7 for ( s ize t i = 0 ; i < a ; ++i ) // f i nd b i g g e s t i d e a l reg ion
8 {
9 pep t area = latarea (i ) ;

10 i f ( area > onezone ) onezone = area ;
11 }
12 onezone /= o ; // Aˆ*
13 zones_per_lev = 0 ; // Z
14 for ( s ize t i = 0 ; i < a ; ++i )
15 {
16 latindex [ i ] = zones_per_lev ; // index o f f i r s t zone o f band
17 // z i : how many zones o f about s tandard s i z e to put in t h i s

l a t i t u d e band
18 zones_per_lat [ i ] = ( s ize t ) rint ( latarea (i ) /onezone ) ;
19 i f ( zones_per_lat [ i ] == 0) zones_per_lat [ i ] = 1 ; // > 0 !
20 zones_per_lev += zones_per_lat [ i ] ;
21 }
22 // Now i t ’ s the r e a l dea l − Aˆdagger
23 onezone = ( latsin [ a]−latsin [ 0 ] ) /zones_per_lev ;
24 // p lace the l a t i t u d e s area−even
25 // a c t u a l l y sw i t ch ing to l a t i t u d e s here
26 for ( s ize t i = 1 ; i < a ; ++i )
27 latb [ i ] = asin ( latsin [ 0 ] + latindex [ i ]* onezone ) ;
28 #undef latarea
29 #undef latsin
30 latb [ 0 ] = B0 ; latb [ a ] = B1 ;
31 for ( s ize t i = 0 ; i < a ; ++i ) // l on g i t u d e s at l a s t
32 {
33 lonb [ i ] = new pep t [ zones_per_lat [ i ]+1 ] ;
34 pep t step = (L1−L0 ) /zones_per_lat [ i ] ;
35 lonb [ i ] [ 0 ] = L0 ; lonb [ i ] [ zones_per_lat [ i ] ] = L1 ;
36 for ( s ize t j = 1 ; j < zones_per_lat [ i ] ; ++j )
37 lonb [ i ] [ j ] = L0 + j*step ; // lambda i , j
38 }
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5 Mass consistency with the climate model

5.2.3 Global partition in 3D (Zo-a-e)

For the global view I combine a partition Zo-a with the logarithmic partition of the whole
vertical range in e layers. This combined, whole, partition into balanced zones is referred
to as Zo-a-e. An alternative to the logarithmic spacing of the layers, given by the computer
program, is usage of the predefined list of pressure borders, e.g. to resolve the tropopause11

more accurately.

Examples of the global partition are shown in Figure 5.5.

5.2.4 Weight from standard atmosphere

My first attempt to make particle counts comparable was the application of the US standard
atmosphere 197612, shown in Table 5.1, based on the pressure levels.

Using that density table, I can assign a pseudo mass to a pressure interval via interpolation
and integration of density. “Pseudo”, because I compute not kg out of the kg/m3, but a
scale value with the unit Pakg/m3 – without using the spatial expends in m. Thus, the
more abstract term “weight” seems more appropriate to me. The computation of the weight
g(pa, pb) of an air layer executes the following scheme:

� Given: pa > pb (begin and end of the layer, pressure falling to the top).

� Extract a sub-table out of the atmosphere table (also using inter/extrapolation), (pi, ρi)
with n entries, so that p1 = pa and pn = pb.

� Weight is computed via mean density in the sub-intervals.

g(pa, pb) =
n∑

i=2

1
2
(ρi−1 + ρi) · (pi−1 − pi) (5.7)

With this rough weighting I can demonstrate now, why the distribution of particles of same
weight (representing the same air mass) in the whole atmosphere is problematic. In Figure 5.7
you see how well the stratosphere is covered by two hundred layers in the whole atmosphere
— basically not at all. One would need a very high number of layers and thus an extremely
high number of particles.otwendig.

The association of a weight with an air layer (pressure range) is a simple possibility to give
weight to the zones of the three-dimensional partition (based on Zo-a). All zones are equal for
their surface area by design13. That way, the relative weight of zones form different air layers
is defined solely by the upper and lower borders of their layers in the pressure coordinate.
Especially, zones in the same layer have the same weight, which eases investigations of
horizontal mass exchange.

But, like showed later on in the analysis of global computations, this weighting is not useful
for transport analysis. Actually, it is not the main point that the table has not enough
data points to describe the model atmosphere. The main point is that you cannot ignore
11the border/transition between troposphere and stratosphere
12The specific table choice is not important. It will be evident that the approach is problematic enough to

void the question about the choice of a norm atmosphere table.
13Remember: The thickness of the atmosphere is neglected against the earth radius.
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Figure 5.5: Three examples for Zo-a and Zo-a-e
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5 Mass consistency with the climate model

geopotential Height geometric height temperature air pressure density
h/m z/m T/◦C p/Pa ρ/ kg

m3

0
11000
20000
32000
47000
51000
71000
84852

0
11019
20063
32162
47350
51413
71802
86000

15
−56, 5
−56, 5
−44, 5
− 2, 5
− 2, 5
−58, 5
−86, 2

1, 0132 · 10+05

2, 2632 · 10+04

5, 4749 · 10+03

8, 6802 · 10+02

1, 1091 · 10+02

6, 6939 · 10+01

3, 9564 · 10+00

3, 7340 · 10−01

1, 2250 · 10+00

3, 6393 · 10−01

8, 8037 · 10−02

1, 3225 · 10−02

1, 4276 · 10−03

8, 6163 · 10−04

6, 4212 · 10−05

6, 9582 · 10−06

Table 5.1: Standard atmosphere 1976 with density
Derived from [WikiNorm].
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Figure 5.6: Computation of the weight of an air layer
from 300hPa to 150hPa in the density table from the standard atmosphere. It is the simples
integration using mean values in the sub-intervals defined by the table points.
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Figure 5.7: 200 layers of same weight according to standard atmosphere
Unsurprisingly, the air mass concentrates at the bottom. That is realistic, but with start-
points distributed along that pattern, there is rarely any information about stratospheric
dynamics.

the dynamics of air mass distribution in the analysis of transport computations. The mass
density in the model shows spatial14 and temporal variability.

5.2.5 Dynamic density from the climate model

I do not need a table like Table 5.1 to attach mass to the transported particles. The wind
fields are extracted from a whole climate model after all! The air density is not one of the
variables given by the model runs directly, but it can be derived. Fields of temperature
T (λ, β, p) and relative humidity s(λ, β, p) are provided. Together with the gas constant
R = 287, 1J/kgK for dry air I can compute the density ρ:

p = ρRT (1 + 0.61s) (5.8)

⇔ ρ =
p

RT (1 + 0.61s)

From this formula I get the field of density ρ(λ, β, o) for every point in time. In Figure 5.8
one can see, that the logarithmic profile is still the main pattern as expected, but the field
has horizontal and well as temporal variation. It is not static at all. The same holds true
for the relation of the pressure coordinate to the height in meters, which I need for the
application of the density to zones from the partition, see Figure 5.9. The vertical extend
of a zone in m together with the base area in m2 enables the computation from density in
kg/m3 to a mass — no pseudo mass, but a definite figure in kg.

14also longitudinal and latitudinal, not just height
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Figure 5.8: Air density from ECHO-GiSP in January and July 1965
Despite the density profile looking flat in the zonal view and only the gradient in height
shows, the horizontal and temporal variability is existent.
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Figure 5.9: Geopotential height of 850hPa and 10hPa in January and July 1965

The height of pressure levels is neither spatially nor temporally constant.

I compute the height h(λ, β, p) of a point with pressure coordinate using the field of geopo-
tential15 hp(λ, β, p) that is also provided by the model.

g(h)dh = g0dhp (5.9)

⇒ ∆Epot =

h∫
0

mg(h)dh = mg0 ·h

A direct conversion between geopotential and “real” meters is given by the definition of g(h),
respectively g0 = g(0), through the ratio g(h)/g0.

g(h) = γ
M

(R + h)2

⇒ g(h)
g0

=
γ M

(R+h)2

γ M
R2

=
(

R

R + h

)2

15Please keep in mind that this is all about time-varying quantities, also, when I do not mention the parameter
t explicitly.
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5 Mass consistency with the climate model

In the differential equation for hp:

dhp =
g(h)
g0

dh =
(

R

R + h

)2

dh

⇔ hp =

h∫
0

(
R

R + h

)2

dh = − R2

R + h

∣∣∣∣h
0

= − R2

R + h
+ R =

−R2 + R(R + h)
R + h

=
−R2 + R2 + Rh

R + h

=
Rh

R + h

The conversion between hp and h follows: 16

hp =
Rh

R + h
⇔ h ⇔ h =

Rhp

R− hp
(5.10)

With the fields ρ(λ, β, p) and h(λ, β, p) I got all the data, to attach a more justified mass
to a three-dimensional partition zones. The method pep t zone_mass::get_mass(place &
bottom, place &top) combines the density from egp_density::get_density( dataindex
index) and the height information from egp_geopoth::get_height( dataindex index) as
well as the base area as defined for all zones by the partitioning scheme to compute the air
mass of the zone specified via bottom and top (interval borders for λ, β, p as well a certain
point in time, t), in the following manner:

1. It defines the intervals in the grid of the source data that completely contain top UN
bottom. This includes the choice of all grid points inside the zone as well as neighboring
points, when the zone border is between those and the included grid points.

2. A mean density is computed from the values out of egp_density::get_density(
dataindex index) on these points. The mean is taken linearly through a weighted
sum and subsequent normalization over all points, where the weight is ruled by cos β
– according to the increase of density of grid points in higher latitudes. There is no
special weighting in the height (still pressure coordinates) because the linear mean
with logarithmically spaced pressure levels already contains the exponential aspect of
the density and also there are only 23 pressure levels in the data; in practice there
will not be much need to sum over a bigger number of levels anyway. Otherwise some
special weighting may be appropriate.

3. Using egp_geopoth::get_height( dataindex index) (and linear interpolation to ptop

and pbottom), a mean height is computed in an analogous way of summing over all
(λi, βi).

4. This mean height is multiplied with the stored base area of a zone to produce the
associated volume. That finally provides the mass for the given zone when multiplied
with the mean density.

A test of this procedure is the comparison of the overall sum of zone masses with an expected
mass for the whole atmosphere. [NCAR-Masse] claims a mean whole mass of 5, 1480 · 1018kg
16For the calming of skeptic minds when looking at (R−hp)−1: hp = R is only possible as limit limh→∞

Rh
R+h

=

R limh→∞
1

R
h

+1
= R
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5.3 Mass conservation ratio, consistency with climate model

with deviations in the range of 1 · 1015kg (changing content of water vapor). With partition
Z20-20-30 I reach 5, 197 · 1018kg, without horizontal partition, Z1-1-30 yields 5, 206 · 1018kg.
Using only 10 layers, Z1-1-10 is a bit more over the top; this partition leads to 5, 729 · 1018kg.
The values are outside the deviation interval given by [NCAR-Masse], but the magnitude
matches. Also, there is the question how close the atmospheric mass implied by ECHO-GiSP
really has to match the value from literature. The reproduction of global circulation patterns
is more in focus than the reproduction of the mass sum.

Also concerning the consistency of mass transport, the computation of the partitioned mass
using temperature, humidity and geo potential is at least an important step forward com-
pared to the rough weighting from the last section. It is evident that the inclusion of model
data is absolutely necessary when you intend to investigate transport and mixing between
different air layers. The comparison of the mass conservation ratio will show this — after I
have defined this term.

5.3 Mass conservation ratio, consistency with climate model

I define the mass conservation ration in the model atmosphere that has been partitioned
into Z zones (like shown in subsection 5.2.3) with volumes Vi, i ∈ [1;Z].

V =
Z∑

i=1

Vi (5.11)

One needs to consider that the volumes Vi are differing, even varying in time. Because of
that – and actually more so because of the huge difference in air density17 – scalars of the
Lagrangian Transport in each zone represent a different air mass, even if thee same number
of particles is started in each zone.

The tracer experiment with the mentioned partitioning of the atmosphere consists of the
fixed distribution of particles at the beginning and the tracing of the number of particles
from zone j in zone i.

number of j-particles in zonei: nij(t) (5.12)

For further considerations and as a basis for comparisons one needs the air mass µi(~P (t)) of
one zone. This is derived from the time-varying physical parameters ~P of the climate model
(temperature, humidity, zone size via geopotential of the pressure levels).

model mass µi(~P (t)) (5.13)

A particle from the Zone j represents a fraction of the mass, that the zone contained at time
t0: µj(~P (t0))/njj(t0). That defines the represented mass of all particles from zone j in zone
i:

represented mass mij(t) = nij ·
µj(~P (t0))
njj(t0)

(5.14)

17Mainly due to the vertical gradient, but also due to horizontal variation.
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5 Mass consistency with the climate model

Summing of these partial masses for each source zone j yields the transport mass, meaning
the mass, that the zone i now contains due to the transport computation.

transport mass Mi(t) =
Z∑

j=1

mij(t) (5.15)

This is one aspect, Another is the mass µi(~P (t)), that should be contained in zone i according
to the model data at the time t. Ideally, these masses should match. That being the case, my
transport computation driven by the wind fields out of the model would be consistent with
that model’s state (concerning the mass distribution). That would be a confirmation for my
method, but also for the climate model itself, since the generated wind is supposed to reflect
the actual dynamics of air masses. Well, the measure for investigating that consistency is
the

mass conservation ratioη(t) =
Mi(t)

µi(~P (t))
(5.16)

This ratio is equal to 1 at time t0 by definition, and is expected to vary, more or less, during
the numerical transport experiment. The comparison between model run with interactive
chemistry and the reference is interesting here, because the generated winds only show a
feedback into the climate model (via the chemistry module) in the interactive run. ECHO-
GiSP computes semi-Lagrangian transport of the concentrations of the various chemical
constituents and the the changed distribution of chemical concentrations influences the model
dynamics through changes in the incoming radiation (absorption/reflection of sunlight). In
the reference run, the winds are used in the chemistry module, but there is no feedback to
the core dynamics.

The first analysis of the mass conservation ratio has been conducted with the assignment
of masses via the rough table of the standard atmosphere. Actually, this was what told me
clearly that this approach for the air weight is not accurate enough. You can follow that
conclusion after looking at Figure 5.10 — the numbers, especially in the higher levels, are so
different from the ideal 1, that they do not even fit into their boxes on the plot! In the lowest
four layers you could imagine that tuning of other parameters influencing the accuracy of
the computations would yield some usable result, but for higher levels, the values are utterly
unacceptable. A density table with more entries than Table 5.1 may help a bit, but for sure
the dynamical approach with data from the model is better than any static table.

The mass conservation under usage of the model data, in Figure 5.11, draws a far more
pleasing picture. The values of η are not free of deviations, but these stay in one order of
magnitude and can serve as a basis for discussing the real problems of my method, or the
model data.

I close this chapter with a comparison of the mass conservation of the d1000-3 run with wind
from the interactive ECHO-GiSP and from the reference18 , to be seen inFigure 5.12. Grave
differences are not discernible; for a more detailed analysis, I also prefer to investigate larger
ensembles. Around one billion of particles (without storing trajectories explicitly) should be
18These d1000-3 stem from earlier data as shown before, because a re-computation after error correction in

a detail has not yet been finished. Because of the the plots are not directly comparable to Figure 5.11,
but still comparable among each other.

80



5.3 Mass conservation ratio, consistency with climate model

0.01

0.1

1

10

100

1000

-80 -60 -40 -20 0 20 40 60 80

p/
h
P
a

β/◦N

η nach 0, 00d

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

0.01

0.1

1

10

100

1000

-80 -60 -40 -20 0 20 40 60 80

p/
h
P
a

β/◦N

η nach 60, 00d

0.31 0.50 0.74 0.92 1.42 0.95 0.74 0.54 0.49 0.58
0.61 0.68 1.18 1.41 1.28 1.23 1.43 0.96 0.72 0.71
0.31 0.48 1.41 1.97 1.71 1.83 1.81 0.91 0.59 0.50
0.14 0.46 2.51 3.25 2.75 3.37 2.38 0.29 0.21 0.11
0.50 0.75 2.07 3.82 4.98 4.34 2.41 0.60 0.34 0.04
0.87 1.01 1.32 2.79 4.94 3.60 1.80 0.98 0.63 0.01
0.98 1.00 1.27 1.72 1.62 1.79 1.69 1.04 0.55 0.06
0.99 1.06 1.35 1.84 1.79 1.50 1.98 1.16 0.80 0.08
1.32 1.37 1.04 1.79 2.59 1.71 1.80 1.09 0.94 0.28
1.37 1.25 1.13 1.79 3.51 3.08 1.96 1.03 0.82 0.37
1.40 1.27 1.18 1.66 3.98 3.79 2.70 1.26 1.45 0.69
2.12 2.04 1.53 1.90 5.23 5.32 4.33 2.12 2.04 1.13
1.88 2.43 1.97 2.79 7.26 6.93 5.04 3.43 2.90 1.52
2.33 2.47 2.78 3.26 6.54 6.66 5.37 4.05 2.80 1.84
3.18 3.17 3.27 4.73 6.80 8.24 7.89 6.17 3.53 4.40
4.49 4.72 5.38 6.91 8.78 12.4412.329.03 6.32 5.15
3.85 6.29 7.15 9.7211.5216.1815.2014.6310.13 6.82
6.75 9.40 9.7310.2312.7721.7320.4120.0011.89 6.14
11.1814.0217.1716.6816.0226.8028.6018.7414.64 5.85
24.1945.3047.4152.2565.8094.3387.4186.1456.0426.29

0.01

0.1

1

10

100

1000

-80 -60 -40 -20 0 20 40 60 80

p/
h
P
a

β/◦N

η nach 180, 00d

0.16 0.36 0.45 0.71 0.79 0.84 1.76 1.00 0.35 0.28
0.46 0.52 0.85 1.33 1.27 1.20 1.42 1.04 0.66 0.49
0.39 0.50 0.92 1.82 1.66 1.81 2.22 1.40 0.72 0.29
0.07 0.18 0.55 2.48 3.35 3.85 4.53 1.63 0.46 0.50
0.06 0.43 1.66 4.13 5.40 7.85 5.12 2.18 1.30 1.10
0.01 0.48 2.70 5.3712.1111.314.28 1.88 1.53 1.08
0.00 0.51 3.05 5.80 8.86 9.07 2.97 1.90 1.15 1.09
0.00 0.19 2.32 5.71 5.86 6.20 3.43 2.13 1.46 1.19
0.00 0.05 1.42 4.33 5.06 5.63 3.64 1.85 1.07 1.19
0.00 0.01 1.17 4.42 6.93 6.97 4.30 2.27 1.02 1.14
0.02 0.04 1.49 6.30 7.47 8.94 5.26 3.11 1.79 0.81
0.17 0.43 4.2212.7613.3213.817.54 4.71 2.10 1.44
0.44 2.97 10.8017.1618.3018.668.64 5.41 3.00 2.31
3.97 10.1916.0824.9823.5324.4614.637.34 4.15 2.93
10.4019.4928.1834.5335.2431.0021.4711.21 6.94 5.17
15.6934.7650.7158.4449.8644.5232.6023.6816.80 5.65
21.6159.4767.2162.0081.0647.3429.1226.2814.2911.24
30.1358.04165.1987.88642.1272.0153.0927.2029.3919.40
140.70120.45141.03151.43174.9774.2163.9349.9729.0732.40
366.60412.42402.86434.45341.77323.34101.80144.7567.16279.26

0.01

0.1

1

10

100

1000

-80 -60 -40 -20 0 20 40 60 80

p/
h
P
a

β/◦N

η nach 120, 00d

0.17 0.36 0.51 0.78 1.48 1.29 0.86 0.48 0.36 0.33
0.43 0.57 1.13 1.46 1.24 1.12 1.39 0.99 0.57 0.44
0.34 0.48 1.39 2.26 1.75 1.59 1.92 1.06 0.35 0.23
0.26 0.26 2.01 3.86 2.62 3.03 2.72 0.45 0.10 0.15
0.48 0.77 2.19 4.74 6.66 5.81 3.35 0.96 0.58 0.56
0.79 1.25 2.26 4.86 8.62 6.61 2.79 1.34 0.82 0.76
0.47 1.13 2.08 4.19 5.21 4.50 2.20 1.08 0.97 0.78
0.36 1.03 2.05 2.82 3.02 2.68 2.58 1.26 1.10 0.79
0.30 0.99 1.73 2.16 3.28 3.15 2.67 1.62 1.14 0.68
0.16 0.63 1.72 2.91 3.64 3.76 3.33 1.59 1.08 1.30
0.16 0.67 2.39 4.39 5.21 4.95 3.88 2.28 0.91 1.22
0.16 1.37 4.08 6.62 7.90 8.55 6.98 4.40 3.24 2.87
0.30 1.18 5.40 8.0011.0810.7210.905.11 3.75 4.31
0.95 1.17 5.4710.2313.9413.5116.1010.49 5.67 6.57
2.56 2.99 10.2116.7322.3321.6420.3213.56 7.97 13.73
1.57 7.24 21.1929.8136.7636.2031.8717.8415.5714.10
3.47 13.0224.5240.6945.6250.6043.1933.5818.0725.18
6.10 9.75 41.8240.1874.4780.4048.2132.6117.1718.24
14.1224.0274.9275.5290.8297.9654.0145.63 9.53 40.16
52.52176.33222.47217.75351.36330.33192.4983.9880.90142.41

0.01

0.1

1

10

100

1000

-80 -60 -40 -20 0 20 40 60 80

p/
h
P
a

β/◦N

η nach 1, 00a

0.11 0.22 0.42 1.25 1.05 0.95 0.82 0.46 0.40 0.37
0.31 0.36 0.86 1.44 1.49 1.36 1.50 0.99 0.60 0.47
0.16 0.18 1.08 2.00 1.80 1.96 2.54 1.14 0.51 0.33
0.02 0.05 1.67 4.25 3.47 3.12 4.42 1.24 0.47 0.29
1.09 0.97 3.13 6.19 6.14 5.46 6.77 3.34 1.72 0.74
2.96 2.61 2.99 6.2411.2315.879.36 5.28 2.40 0.79
4.00 4.19 4.12 6.3514.7917.2910.147.06 4.32 1.85
5.72 6.49 6.0812.3617.1821.2214.619.44 4.37 2.57
8.09 8.28 7.7014.3224.6726.8017.539.91 6.07 2.43
10.4910.1913.0718.0040.3539.7225.1214.27 7.65 1.93
15.1919.3719.8523.0649.2847.1931.7523.2915.21 5.01
11.5533.1426.8443.8283.0185.5846.7244.3328.7015.67
10.2227.0938.9449.89151.98184.45131.8980.4883.9140.91
28.9633.6445.74127.84153.62195.72159.69130.5083.62126.90
16.1547.2176.03118.39135.66294.94143.92124.05207.8298.28
422.9941.25166.82231.97440.06538.15493.34398.31159.3180.68
79.80453.1886.25360.13361.76836.26471.72143.151006.44350.63
44.9689.1282.54355.97202.31404.48311.34259.281223.9682.49
30.19103.82209.79194.93453.18254.27240.01185.31348.45219.80
363.97247.48639.26227.38776.186483.11891.25766.773369.35236.49

0 0.2 0.4 0.6 0.8 1

normalisierter Wert

Figure 5.10: Mass conservation ratio d1000-3, standard atmosphere
The first — frightening — incarnation of the mass comparison according to subsection 5.2.4
for the year 1965 of the interactive ECHO-GiSP data as covered by the d1000-3 run. The
values of η in the respective zone (the mean over all zones in a latitude/pressure region
that are stacked in this zonal view) are given via color coding and the written numbers.
The color coding itself is only meaningful from 0 to 1.
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5 Mass consistency with the climate model
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Figure 5.11: Mass conservation ratio d1000-3, dynamic model weight
Computed from the same trajectory ensemble as Figure 5.10, this shows a more balanced
picture, thanks to the density data from the model. But the picture is not all bright:
Especially at the poles there seems to be a problem of keeping the mass. It has to be
determined in future, in how far that is the fault of the trajectory computation and thus
could be improved there or the (partial) fault of the climate model itself.
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5.3 Mass conservation ratio, consistency with climate model
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0.42 0.45 0.49 0.66 0.95 1.28 1.28 1.11 1.07 0.94
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0.28 0.55 0.30 0.54 0.48 0.97 0.83 0.53 0.65 0.60
0.74 0.71 0.67 0.44 1.08 1.64 2.01 2.12 1.72 1.54
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Figure 5.12: Comparison of mass conservation, reference and interactive
...of two earlier d1000-3 runs. You can see some difference in details (exact values of the
numbers), while the global picture is very similar.

possible with few weeks / months of computing time on the Grotrian cluster, and are being
undertaken.
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6 Summary

In this diploma thesis, I developed a numerical approach for the three-dimensional La-
grangian transport in the atmosphere, driven by wind fields from a climate model. The
computation of a single integration step in local coordinates circumvents the problem of
the geographical coordinates near the poles, thus makes possible really global computation
of particle trajectories with a uniform scheme. The software architecture, outlined here
and available with complete source code at [PEP-Tracer], has not just been designed, but
is currently able to handle large data sets as input and output. The modular construc-
tion facilitates the consequent improvement and inclusion of advanced analysis schemes and
alternative approaches, e.g. for interpolation and integration.

The transport of ensembles of several million particles over a time range up to 80 years
has been computed. Computing time for that on the Grotrian cluster was below a week
for one run. The efficiency can be significantly improved, for sure, because performance
optimizations so far only occurred in form of the buffer in echog_pressure_cached.

The weighting of particles using a local air density derived from the model data provides
the theoretical possibility of quantitative investigations on transport and mixing also over
large scales in the vertical direction (from the earth surface to the stratosphere and back).
A balanced partition of the sphere surface with cells of equal base area, while keeping ap-
proximately uniform latitudinal resolution, provides a basic approach to avoid statistical and
numerical problems of the smaller cells of a usual grid towards the poles. Practical limits
of the mass ratio computation need to be established, while the method needs to be tuned
with the mass conservation ratio in mind.

At several occasions, the results up to now have been presented. First steps with two-
dimensional transport using simplest integration have been shown in form of an animation
at the Potsdamer Wissenschaftsmarkt in the course of the Einstein year 2005 ([WissMarkt])
as well as on a Poster at the IEEE NDES 2005 ([NDES2005]) and the EGU general assembly
2006 ([EGU2006A] and [EGU2006N]). The three-dimensional investigations were presented
at the EGU general assembly of this year, in form of a poster ([Orgis2007]). Furthermore,
the developed program package has been used for other work on the ECHO-GiSP data,
presented in a talk at the EGU general assemble of this year ([Chandra2007]).

In future, even larger ensembles shall be computed for the more detailed evaluation of the
method. The analysis methods are actively extended. Produced trajectories need more
statistical methods as well as methods of Nonlinear Dynamics, to cover further questions of
atmospheric physics, in the end.

More a by-product – but still an important one for me – is the treatment of the linear
interpolation in a grid cell of arbitrary dimensions, more thorough than anything I have
been able to find in the literature1.

1I am talking of Equation 3.9 and Equation 3.13
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